1. Find the duration of a perpetuity-immediate with payments of 1 every two years?
A. $\frac{1}{1-2 v^{2}}$
B. $\frac{2}{1-v^{2}}$
C. $\frac{2 v^{2}}{\left(1-v^{2}\right)^{2}}$
D. $\frac{2}{(1-v)^{2}}$
E. $\frac{1}{d^{(1 / 2)}}$

Short answer:
If you happen to know that the annual perpetuity has a duration of $1 / d$, then it follows that the duration for the biannual duration should be $2\left(1 / d^{(1 / 2)}\right)$. This is because $1 / d^{(1 / 2)}$ should be the duration of the biannual perpetuity counted in two-year periods, and to obtain a result in years, as duration must always be in units of years, we must multiply by 2 . Now if we notice that $1-v^{2}=d^{(1 / 2)}$, we can see that the correct choice is B .
Longer answer 1 :
We can compute from scratch.

$$
\begin{aligned}
\mathrm{MacD}=\frac{\sum t A_{t}}{\sum A_{t}} & =\frac{2 v^{2}+4 v^{4}+6 v^{6}+\cdots}{v^{2}+v^{4}+v^{6}+\cdots} \\
& =\frac{2(I a)_{\varnothing j j}}{a_{\varnothing j}}
\end{aligned}
$$

where j is the effective rate of interest per 2 years. Let d_{j} be the effective rate of discount per 2 years

$$
\begin{aligned}
& =\frac{2 \frac{1}{d_{j} \times j}}{\frac{1}{j}} \\
& =\frac{2}{d_{j}} \\
& =\frac{2}{1-v^{2}}
\end{aligned}
$$

Long answer 2 :
We can compute from scratch, and practice with power series from calculus is useful in this case.

$$
\begin{aligned}
\mathrm{MacD}=\frac{\sum t A_{t}}{\sum A_{t}} & =\frac{2 v^{2}+4 v^{4}+6 v^{6}+\cdots}{v^{2}+v^{4}+v^{6}+\cdots} \\
& =\frac{v\left(2 v+4 v^{3}+\cdots\right)}{\left(\sum_{k=0}^{\infty} v^{2 k}\right)-1} \\
& =\frac{v\left(\frac{d}{d v}\left(v^{2}+v^{4}+\cdots\right)\right)}{\frac{1}{1-v^{2}}-1} \\
& =\frac{v\left(\frac{d}{d v}\left(\left(\sum_{k=0}^{\infty} v^{2 k}\right)-1\right)\right)}{\left(1-v^{2}\right)^{-1}-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{v\left(\frac{d}{d v}\left(\frac{1}{1-v^{2}}-1\right)\right)}{\left(1-v^{2}\right)^{-1}-1} \\
& =\frac{v\left(-1\left(1-v^{2}\right)^{-2}(-2 v)\right)}{\left(1-v^{2}\right)^{-1}-1} \\
& =\frac{2 v^{2}\left(1-v^{2}\right)^{-2}}{\left(1-v^{2}\right)^{-1}-1} \\
& =\frac{2 v^{2}\left(1-v^{2}\right)^{-1}}{1-\left(1-v^{2}\right)} \\
& =\frac{2}{1-v^{2}}
\end{aligned}
$$

