The Infinite Actuary The Infinite Actuary Sign In
  • Products
    • ASA
      • P
      • FM
      • MLC
      • MFE
      • IFM
      • C
      • STAM
      • LTAM
    • ACAS
      • P
      • FM
      • MFE
      • IFM
      • MAS-I
      • C
      • Exam 5
      • Exam 6
    • CERA
      • ERM
      • Exam 7
      • Exam 9
    • FSA
      • ILA LP
      • ILA LFV - U
      • ILA LFV - C
      • ILA LRM
      • ERM
      • QFI - Core
      • QFI - Adv
      • QFI - IRM
      • GH - Core
      • GH - Adv
      • GH - Specialty
    • FCAS
      • Exam 5
      • Exam 6
      • Exam 7
      • Exam 8
      • Exam 9
    • EA
      • 1
      • 2L
      • 2F
    • SKILLS
      • TSC
      • Databases
      • R Course
      • MIA
  • Lessons
    • ASA
      • P
      • FM
      • MLC
      • MFE
      • IFM
      • C
      • STAM
      • LTAM
    • ACAS
      • P
      • FM
      • MFE
      • IFM
      • MAS-I
      • C
      • Exam 5
      • Exam 6
    • CERA
      • ERM
      • Exam 7
      • Exam 9
    • FSA
      • ILA LP
      • ILA LFV - U
      • ILA LFV - C
      • ILA LRM
      • ERM
      • QFI - Core
      • QFI - Adv
      • QFI - IRM
      • GH - Core
      • GH - Adv
      • GH - Specialty
    • FCAS
      • Exam 5
      • Exam 6
      • Exam 7
      • Exam 8
      • Exam 9
    • EA
      • 1
      • 2L
      • 2F
    • SKILLS
      • TSC
      • Databases
      • R Course
      • MIA
  • About
  • Support
Exam STAM
It appears you have another session open on a separate window or computer. To continue here and log off the other session click Continue, otherwise click Cancel. Please remember that it is against the terms and conditions to share your account. Thanks.
  • STAM Lessons
  • STAM Solutions
  • STAM Sample Exams
  • Blog
No new or updated lessons flagged lessons found on this tab
No lessons found on this tab
Please sign in or register to view this content
Or find free sample lessons of this exam
Download MP3 file
Download Handouts
Previous Chapter:
none
New / Updated * Flagged *
Previous Lesson:
Watch Lesson:
star star star
Completed by
...
%
of students with your exam date.    ( 56% reporting )  
Play
Work Problems
Discuss Lesson
first pass completed
... problems worked
--% correct
Next Lesson:
Next Chapter:
none
No new or updated lessons flagged lessons found on this tab
No lessons found on this tab
Please sign in or register to view this content
Or find free sample lessons of this exam
Download MP3 file
Download Handouts
Previous Chapter:
none
New / Updated * Flagged *
Previous Lesson:
Watch Lesson:
star star star
Completed by
...
%
of students with your exam date.    ( 56% reporting )  
Play
Work Problems
Discuss Lesson
first pass completed
... problems worked
--% correct
Next Lesson:
Next Chapter:
none
No new or updated lessons flagged lessons found on this tab
No lessons found on this tab
Please sign in or register to view this content
Or find free sample lessons of this exam
Download MP3 file
Download Handouts
Previous Chapter:
none
New / Updated * Flagged *
Previous Lesson:
Watch Lesson:
star star star
Completed by
...
%
of students with your exam date.    ( 56% reporting )  
Play
Work Problems
Discuss Lesson
first pass completed
... problems worked
--% correct
Next Lesson:
Next Chapter:
none
Blog preview is temporarily unavailable, please see the main page to view recent posts.
Find Last Played
  • Expand All
  • Collapse All
  • Print Lesson List
  • All
  • Search
Search term:  
Searches titles below, use an * (asterisk) for any character
  • Important Tables and FAQ ... lessons ... min of video
    • General Info ...
      • How to Prepare (15:41)
      • TIA Problem System (7:45)
      • TIA Discussion Forum (5:58)
      • Video Player Keyboard Shortcuts (handout)
      • You Failed, Now What? (12:00)
    • Key Course Handouts ...
      • Exam Distribution Tables (handout)
      • Exam STAM Syllabus (handout)
      • Notation and Terminology Note (handout)
  • STAM-A. Loss Models ... lessons ... min of video
    • A.1 Probability Review ...
      • A.1.1 Describing Distributions (sample) (24:32)
      • A.1.2 Moments (sample) (21:25)
      • A.1.3 Generating Functions (sample) (15:27)
      • A.1.4 Joint and Conditional Distributions (sample) (16:15)
      • A.1.5 Conditional Moments (sample) (24:43)
      • A.1.6 Mixtures (sample) (16:44)
      • A.1.7 Sums of Random Variables (sample) (16:25)
    • A.2 Key Continuous Distributions ...
      • A.2.1 The Exponential Distribution (sample) (18:10)
      • A.2.2 The Gamma Distribution (sample) (17:38)
      • A.2.3 The Pareto Distribution (sample) (13:33)
      • A.2.4 Normal and Lognormal Distributions (sample) (22:07)
      • A.2.5 Uniforms and Summary (sample) (10:56)
    • A.3 Severity Models ...
      • A.3.1 Scale Parameters (13:12)
      • A.3.2 Deductibles (18:34)
      • A.3.3 Limits (23:56)
      • A.3.4 Other Adjustments (18:41)
      • A.3.5 Variances (26:36)
      • A.3.6 Decomposing Losses (Optional) (15:22)
    • A.4 Misc. Continuous Topics ...
      • A.4.1 Transformations (12:10)
      • A.4.2 Spliced Distributions (13:56)
      • A.4.3 Frailty Models (16:19)
      • A.4.4 Tail Weights (22:29)
    • A.5 Frequency Models ...
      • A.5.1 Key Discrete Distributions (20:42)
      • A.5.2 Poisson-Gamma (12:46)
      • A.5.3 (a, b, 0) Definition (12:57)
      • A.5.4 (a, b, 1) Distributions (19:47)
      • A.5.5 Moments of (a, b, 1) Distributions (16:51)
    • A.6 Aggregate Models ...
      • A.6.1 Normal Approximations (22:21)
      • A.6.2 Discrete Severities (25:03)
      • A.6.3 Deductibles Per Loss (13:07)
      • A.6.4 Aggregate Deductibles (11:39)
      • A.6.5 Continuous Aggregate Distributions (12:17)
      • A.6.6 Discretization (16:26)
  • STAM-B. Risk Measures ... lessons ... min of video
    • B.1 VaR and TVaR ...
      • B.1.1 Risk Measures (16:54)
      • B.1.2 Normal and Lognormal Distributions (15:12)
      • B.1.3 Deductibles (16:00)
    • B.2 Coherence ...
      • B.2.1 Coherence (16:54)
  • STAM-C. Parametric Estimators ... lessons ... min of video
    • C.1 Maximum Likelihood Estimators ...
      • C.1.1 Maximum Likelihood Estimators (25:06)
      • C.1.2 Special Cases (20:44)
      • C.1.3 Exponentials (20:16)
      • C.1.4 Range Depends on Parameters (18:18)
      • C.1.5 Transformations (16:54)
      • C.1.6 Calculator Methods (14:03)
    • C.2 Estimating Discrete Distributions ...
      • C.2.1 MLE for (a, b, 1) Distributions (14:00)
      • C.2.2 Which (a, b, 1) Distribution? (16:36)
    • C.3 Variances of MLEs ...
      • C.3.1 Variances of MLEs (13:27)
      • C.3.2 Fisher's Information (23:34)
      • C.3.3 Fisher's Information Continued (24:11)
      • C.3.4 Delta Method (18:37)
      • C.3.5 Delta Method Continued (11:07)
    • C.4 Hypothesis Testing ...
      • C.4.1 D(x) Plots (15:35)
      • C.4.2 p-p plots (14:37)
      • C.4.3 Hypothesis Testing (11:53)
      • C.4.4 Kolmogorov-Smirnov (29:18)
      • C.4.5 Chi-Square Tests I (24:43)
      • C.4.6 Chi-Square Tests 2 (14:53)
      • C.4.7 Score Based Models (15:26)
      • C.4.8 Likelihood Ratio Test (21:51)
      • C.4.9 Non-Normal Confidence Intervals (14:01)
  • STAM-D. Credibility ... lessons ... min of video
    • D.1 Classical Credibility ...
      • D.1.1 Credibility for Frequency (16:15)
      • D.1.2 Credibility for Aggregate Distributions (17:28)
      • D.1.3 Partial Credibility (12:11)
    • D.2 Bayesian Credibility (Coming in May) ...
      • D.2.0a Recognizing Distributions (handout)
      • D.2.0b Calculus Tricks (handout)
      • D.2.1 Discrete Bayesian Credibility (handout)
      • D.2.2 Continuous Bayesian Credibility (handout)
      • D.2.3 Poisson/Gamma (handout)
      • D.2.4 Binomial/Beta (handout)
      • D.2.5 Gamma and Inverse Gamma Families (handout)
      • D.2.6 Harder Examples (handout)
      • D.2.7 Predictive vs Posterior (handout)
    • D.3 Buhlmann Credibility (Coming in May) ...
      • D.3.1 Buhlmann Credibility (handout)
      • D.3.2 Buhlmann with Discrete Distributions (handout)
      • D.3.3 Generalizations (handout)
      • D.3.4 Exact Credibility (handout)
      • D.3.5 Buhlmann as Linear Approximation of Bayesian (handout)
      • D.3.6 Normal/Normal and Lognormal/Normal (handout)
    • D.4 Empirical Credibility (Coming in May) ...
      • D.4.1 Non-Parametric Credibility: Uniform Case (handout)
      • D.4.2 Non-Parametric Credibility: General Case (handout)
      • D.4.3 Semi-Parametric Credibility: Poisson Case (handout)
      • D.4.4 Semi-Parametric Credibility: Non-Poisson Case (handout)
  • STAM-E. General Insurance (Coming in June) ... lessons ... min of video
    • E.1 Reserving (Coming in June) ...
      • Reserving (Coming in June) (handout)
  • A.1 Probability Review ... lessons ... min of video
    • A.1.1 Describing Distributions ...
      • A.1.1 #1 (1:43)
      • A.1.1 #2 (3:04)
      • A.1.1 #3 (1:03)
      • A.1.1 #4 (1:24)
    • A.1.2 Moments ...
      • A.1.2 #1 (7:30)
      • A.1.2 #2 (2:24)
      • A.1.2 #3 (2:33)
      • A.1.2 #4 (2:19)
      • A.1.2 #5 (3:38)
      • A.1.2 #6 (3:16)
      • A.1.2 #7 (6:03)
      • A.1.2 #8 (2:26)
      • A.1.2 #9 (1:53)
    • A.1.3 Generating Functions ...
      • A.1.3 #1 (4:35)
      • A.1.3 #2 (4:06)
      • A.1.3 #3 (3:50)
      • A.1.3 #4 (1:03)
      • A.1.3 #5 (3:20)
      • A.1.3 #6 (2:17)
    • A.1.4 Joint and Conditional Distributions ...
      • A.1.4 #1 (0:28)
      • A.1.4 #2 (1:57)
    • A.1.5 Conditional Moments ...
      • A.1.5 #1 (2:28)
      • A.1.5 #2 (2:36)
      • A.1.5 #3 (2:16)
    • A.1.6 Mixtures ...
      • A.1.6 #1 (3:19)
      • A.1.6 #2 (3:11)
      • A.1.6 #3 (2:46)
      • A.1.6 #4 (1:02)
    • A.1.7 Sums of Random Variables ...
      • A.1.7 #1 (1:59)
      • A.1.7 #2 (1:00)
      • A.1.7 #3 (4:53)
  • A.2 Key Continuous Distributions ... lessons ... min of video
    • A.2.1 The Exponential Distribution ...
      • A.2.1 #1 (2:04)
      • A.2.1 #2 (2:05)
      • A.2.1 #3 (4:25)
      • A.2.1 #4 (6:10)
      • A.2.1 #5 (3:35)
      • A.2.1 #6 (2:17)
      • A.2.1 #7 (1:07)
      • A.2.1 #8 (4:24)
    • A.2.2 The Gamma Distribution ...
      • A.2.2 #1 (2:07)
      • A.2.2 #2 (2:54)
    • A.2.3 The Pareto Distribution ...
      • A.2.3 #1 (2:12)
      • A.2.3 #2 (4:09)
      • A.2.3 #3 (2:08)
      • A.2.3 #4 (1:14)
      • A.2.3 #5 (0:59)
      • A.2.3 #6 (3:36)
    • A.2.4 Normal and Lognormal Distributions ...
      • A.2.4 #1 (3:41)
      • A.2.4 #2 (2:04)
      • A.2.4 #3 (2:19)
      • A.2.4 #4 (3:33)
      • A.2.4 #5 (1:44)
      • A.2.4 #6 (3:59)
      • A.2.4 #7 (3:15)
      • A.2.4 #8 (3:55)
      • A.2.4 #9 (3:47)
      • A.2.4 #10 (3:46)
      • A.2.4 #11 (3:02)
      • A.2.4 #12 (2:54)
      • A.2.4 #13 (1:03)
      • A.2.4 #14 (3:19)
      • A.2.4 #15 (3:20)
    • A.2.5 Uniforms and Summary ...
      • A.2.5 #2 (0:44)
      • A.2.5 #3 (2:11)
  • A.3 Severity Models ... lessons ... min of video
    • A.3.1 Scale Parameters ...
      • A.3.1 #1 (3:29)
      • A.3.1 #2 (2:21)
      • A.3.1 #3 (0:39)
      • A.3.1 #4 (2:05)
      • A.3.1 #5 (2:00)
      • A.3.1 #10 (3:28)
    • A.3.2 Deductibles ...
      • A.3.2 #1 (2:16)
      • A.3.2 #2 (1:53)
      • A.3.2 #3 (2:16)
      • A.3.2 #4 (2:38)
      • A.3.2 #5 (1:17)
      • A.3.2 #6 (1:09)
      • A.3.2 #7 (2:19)
      • A.3.2 #8 (5:36)
    • A.3.3 Limits ...
      • A.3.3 #1 (4:43)
      • A.3.3 #2 (3:57)
      • A.3.3 #3 (3:07)
      • A.3.3 #4 (3:07)
      • A.3.3 #5 (3:09)
    • A.3.4 Other Adjustments ...
      • A.3.4 #1 (1:14)
      • A.3.4 #2 (5:20)
      • A.3.4 #3 (2:09)
      • A.3.4 #4 (2:27)
      • A.3.4 #5 (3:01)
      • A.3.4 #6 (1:55)
      • A.3.4 #7 (1:40)
    • A.3.5 Variances ...
      • A.3.5 #1 (1:18)
      • A.3.5 #2 (3:13)
      • A.3.5 #3 (6:17)
      • A.3.5 #4 (6:31)
      • A.3.5 #5 (3:06)
    • A.3.6 Decomposing Losses (Optional) ...
      • A.3.6 #1 (1:39)
      • A.3.6 #2 (1:47)
      • A.3.6 #3 (3:08)
  • A.4 Misc. Continuous Topics ... lessons ... min of video
    • A.4.1 Transformations ...
      • A.4.1 #1 (4:40)
      • A.4.1 #2 (0:59)
      • A.4.1 #3 (2:04)
      • A.4.1 #4 (1:59)
      • A.4.1 #5 (1:54)
    • A.4.2 Spliced Distributions ...
      • A.4.2 #1 (1:36)
      • A.4.2 #2 (3:08)
      • A.4.2 #3 (4:53)
      • A.4.2 #4 (4:18)
      • A.4.2 #5 (7:06)
      • A.4.2 #6 (5:28)
      • A.4.2 #7 (2:15)
      • A.4.2 #8 (2:59)
    • A.4.3 Frailty Models ...
      • A.4.3 #1 (3:08)
      • A.4.3 #2 (2:29)
      • A.4.3 #3 (4:09)
      • A.4.3 #4 (2:59)
      • A.4.3 #5 (2:49)
      • A.4.3 #6 (2:55)
      • A.4.3 #7 (2:59)
    • A.4.4 Tail Weights ...
      • A.4.4 #1 (4:38)
      • A.4.4 #2 (1:06)
  • A.5 Frequency Models ... lessons ... min of video
    • A.5.1 Key Discrete Distributions ...
      • A.5.1 #3 (2:17)
      • A.5.1 #4 (4:32)
      • A.5.1 #5 (1:36)
      • A.5.1 #6 (1:43)
      • A.5.1 #7 (0:47)
      • A.5.1 #8 (1:46)
      • A.5.1 #9 (2:45)
      • A.5.1 #10 (1:20)
      • A.5.1 #11 (3:31)
      • A.5.1 #12 (1:24)
    • A.5.2 Poisson-Gamma ...
      • A.5.2 #1 (1:56)
      • A.5.2 #2 (0:57)
      • A.5.2 #3 (1:53)
      • A.5.2 #4 (2:19)
    • A.5.3 (a, b, 0) Definition ...
      • A.5.3 #1 (1:41)
      • A.5.3 #2 (2:30)
      • A.5.3 #3 (0:59)
    • A.5.4 (a, b, 1) Distributions ...
      • A.5.4 #1 (0:43)
      • A.5.4 #2 (2:21)
      • A.5.4 #3 (3:01)
    • A.5.5 Moments of (a, b, 1) Distributions ...
      • A.5.5 #1 (1:01)
      • A.5.5 #2 (3:10)
  • A.6 Aggregate Models ... lessons ... min of video
    • A.6.1 Normal Approximations ...
      • A.6.1 #3 (2:56)
      • A.6.1 #5 (2:30)
      • A.6.1 #10 (2:53)
      • A.6.1 #11 (3:16)
      • A.6.1 #12 (2:31)
      • A.6.1 #13 (4:10)
      • A.6.1 #14 (0:41)
      • A.6.1 #17 (0:51)
      • A.6.1 #18 (2:05)
      • A.6.1 #27 (4:35)
      • A.6.1 #28 (3:55)
    • A.6.2 Discrete Severities ...
      • A.6.2 #2 (5:41)
      • A.6.2 #3 (1:25)
      • A.6.2 #4 (3:14)
    • A.6.3 Deductibles Per Loss ...
      • A.6.3 #1 (1:16)
      • A.6.3 #2 (1:34)
      • A.6.3 #3 (1:14)
      • A.6.3 #4 (1:18)
    • A.6.4 Aggregate Deductibles ...
      • A.6.4 #1 (5:34)
      • A.6.4 #2 (6:56)
      • A.6.4 #3 (1:06)
      • A.6.4 #4 (1:31)
    • A.6.5 Continuous Aggregate Distributions ...
      • A.6.5 #1 (1:49)
      • A.6.5 #2 (1:59)
  • B.1 VaR and TVaR ... lessons ... min of video
    • B.1.1 Risk Measures ...
      • B.1.1 #1 (2:11)
      • B.1.1 #2 (1:32)
      • B.1.1 #3 (2:40)
      • B.1.1 #4 (1:33)
      • B.1.1 #6 (1:38)
      • B.1.1 #7 (1:02)
      • B.1.1 #8 (3:02)
    • B.1.2 Normal and Lognormal Distributions ...
      • B.1.2 #1 (2:19)
      • B.1.2 #2 (2:02)
      • B.1.2 #3 (2:38)
      • B.1.2 #4 (2:54)
      • B.1.2 #5 (3:45)
    • B.1.3 Deductibles ...
      • B.1.3 #1 (2:12)
      • B.1.3 #2 (3:12)
      • B.1.3 #3 (1:58)
      • B.1.3 #4 (8:56)
  • B.2 Coherence ... lessons ... min of video
    • B.2.1 Coherence ...
      • B.2.1 #1 (4:59)
      • B.2.1 #2 (0:31)
      • B.2.1 #3 (0:41)
      • B.2.1 #4 (3:38)
  • C.1 Maximum Likelihood Estimators ... lessons ... min of video
    • C.1.1 Maximum Likelihood Estimators ...
      • C.1.1 #1 (2:37)
      • C.1.1 #2 (1:32)
      • C.1.1 #3 (4:01)
      • C.1.1 #4 (1:44)
      • C.1.1 #5 (7:11)
      • C.1.1 #6 (1:53)
      • C.1.1 #7 (1:39)
      • C.1.1 #8 (1:42)
      • C.1.1 #9 (1:40)
      • C.1.1 #10 (2:43)
      • C.1.1 #11 (3:11)
      • C.1.1 #12 (1:53)
      • C.1.1 #13 (2:44)
      • C.1.1 #14 (4:04)
      • C.1.1 #15 (1:57)
      • C.1.1 #16 (1:09)
    • C.1.2 Special Cases ...
      • C.1.2 #1 (1:39)
    • C.1.3 Exponentials ...
      • C.1.3 #1 (1:03)
      • C.1.3 #2 (4:16)
      • C.1.3 #3 (1:16)
      • C.1.3 #4 (3:50)
    • C.1.4 Range Depends on Parameters ...
      • C.1.4 #1 (1:58)
    • C.1.5 Transformations ...
      • C.1.5 #1 (1:00)
      • C.1.5 #2 (1:10)
      • C.1.5 #3 (2:36)
      • C.1.5 #4 (1:54)
      • C.1.5 #5 (3:38)
      • C.1.5 #6 (2:52)
      • C.1.5 #7 (1:59)
  • C.2 Estimating Discrete Distributions ... lessons ... min of video
    • C.2.1 MLE for (a, b, 1) Distributions ...
      • C.2.1 #1 (0:28)
      • C.2.1 #2 (1:05)
      • C.2.1 #3 (5:18)
      • C.2.1 #4 (5:08)
    • C.2.2 Which (a, b, 1) Distribution? ...
      • C.2.2 #1 (2:20)
      • C.2.2 #2 (2:30)
      • C.2.2 #3 (1:00)
  • C.3 Variances of MLEs ... lessons ... min of video
    • C.3.1 Variances of MLEs ...
      • C.3.1 #1 (1:19)
      • C.3.1 #2 (1:22)
    • C.3.2 Fisher's Information ...
      • C.3.2 #1 (0:43)
      • C.3.2 #2 (2:36)
      • C.3.2 #3 (4:36)
      • C.3.2 #4 (2:12)
      • C.3.2 #5 (3:13)
      • C.3.2 #6 (2:57)
      • C.3.2 #7 (1:14)
    • C.3.3 Fisher's Information Continued ...
      • C.3.3 #1 (1:36)
    • C.3.4 Delta Method ...
      • C.3.4 #1 (5:30)
      • C.3.4 #2 (1:07)
      • C.3.4 #3 (5:02)
    • C.3.5 Delta Method Continued ...
      • C.3.5 #1 (4:45)
  • C.4 Hypothesis Testing ... lessons ... min of video
    • C.4.1 D(x) Plots ...
      • C.4.1 #1 (1:41)
      • C.4.1 #2 (2:18)
    • C.4.2 p-p plots ...
      • C.4.2 #1 (0:58)
      • C.4.2 #2 (0:25)
      • C.4.2 #3 (1:41)
    • C.4.3 Hypothesis Testing ...
      • C.4.3 #1 (0:43)
      • C.4.3 #2 (1:50)
      • C.4.3 #3 (2:44)
      • C.4.3 #4 (3:29)
      • C.4.3 #5 (1:42)
      • C.4.3 #6 (4:10)
      • C.4.3 #7 (1:37)
    • C.4.4 Kolmogorov-Smirnov ...
      • C.4.4 #1 (4:01)
      • C.4.4 #2 (2:32)
      • C.4.4 #3 (2:41)
      • C.4.4 #4 (3:07)
    • C.4.5 Chi-Square Tests I ...
      • C.4.5 #1 (4:08)
      • C.4.5 #2 (5:09)
      • C.4.5 #3 (3:43)
      • C.4.5 #4 (2:07)
      • C.4.5 #5 (2:19)
      • C.4.5 #6 (2:49)
    • C.4.7 Score Based Models ...
      • C.4.7 #1 (0:42)
    • C.4.8 Likelihood Ratio Test ...
      • C.4.8 #1 (1:22)
      • C.4.8 #2 (2:13)
      • C.4.8 #3 (3:21)
      • C.4.8 #4 (1:21)
      • C.4.8 #5 (0:35)
      • C.4.8 #6 (4:36)
      • C.4.8 #7 (3:08)
    • C.4.9 Non-Normal Confidence Intervals ...
      • C.4.9 #1 (4:13)
      • C.4.9 #2 (2:25)
      • C.4.9 #3 (5:00)
      • C.4.9 #4 (1:24)
      • C.4.9 #5 (4:20)
  • D.1 Classical Credibility ... lessons ... min of video
    • D.1.1 Credibility for Frequency ...
      • D.1.1 #1 (0:59)
      • D.1.1 #2 (1:21)
    • D.1.2 Credibility for Aggregate Distributions ...
      • D.1.2 #1 (1:18)
      • D.1.2 #2 (3:41)
      • D.1.2 #3 (1:06)
      • D.1.2 #4 (1:19)
      • D.1.2 #5 (4:02)
      • D.1.2 #6 (2:14)
      • D.1.2 #7 (1:26)
      • D.1.2 #8 (1:10)
      • D.1.2 #9 (2:14)
    • D.1.3 Partial Credibility ...
      • D.1.3 #1 (1:57)
      • D.1.3 #2 (3:42)
      • D.1.3 #3 (2:48)
      • D.1.3 #4 (1:37)
  • D.2 Bayesian Credibility ... lessons ... min of video
    • D.2.1 Discrete Bayesian Credibility ...
      • D.2.1 #1 (1:18)
      • D.2.1 #2 (3:51)
      • D.2.1 #3 (6:03)
      • D.2.1 #4 (4:28)
      • D.2.1 #5 (5:01)
      • D.2.1 #6 (3:15)
      • D.2.1 #14 (4:02)
    • D.2.2 Continuous Bayesian Credibility ...
      • D.2.2 #1 (2:27)
      • D.2.2 #2 (4:43)
      • D.2.2 #3 (1:52)
      • D.2.2 #4 (6:39)
      • D.2.2 #5 (3:35)
      • D.2.2 #6 (2:58)
      • D.2.2 #7 (3:59)
    • D.2.3 Poisson/Gamma ...
      • D.2.3 #1 (1:23)
      • D.2.3 #2 (1:51)
      • D.2.3 #3 (2:38)
      • D.2.3 #4 (2:47)
    • D.2.4 Binomial/Beta ...
      • D.2.4 #1 (3:29)
      • D.2.4 #2 (2:22)
      • D.2.4 #3 (3:07)
      • D.2.4 #4 (2:24)
    • D.2.6 Harder Examples ...
      • D.2.6 #1 (3:19)
      • D.2.6 #2 (4:00)
      • D.2.6 #3 (2:41)
      • D.2.6 #6 (2:54)
      • D.2.6 #7 (2:35)
  • D.3 Buhlmann Credibility ... lessons ... min of video
    • D.3.1 Buhlmann Credibility ...
      • D.3.1 #1 (3:01)
      • D.3.1 #2 (3:56)
      • D.3.1 #3 (2:13)
      • D.3.1 #4 (1:56)
      • D.3.1 #5 (3:29)
      • D.3.1 #6 (3:28)
    • D.3.2 Buhlmann with Discrete Distributions ...
      • D.3.2 #1 (2:52)
      • D.3.2 #2 (2:45)
      • D.3.2 #3 (3:09)
      • D.3.2 #4 (2:33)
      • D.3.2 #5 (5:00)
      • D.3.2 #6 (2:30)
    • D.3.3 Generalizations ...
      • D.3.3 #1 (4:27)
      • D.3.3 #2 (1:34)
    • D.3.5 Buhlmann as Linear Approximation of Bayesian ...
      • D.3.5 #1 (4:43)
    • D.3.6 Normal/Normal and Lognormal/Normal ...
      • D.3.6 #1 (3:43)
      • D.3.6 #2 (2:20)
      • D.3.6 #3 (2:35)
      • D.3.6 #4 (3:26)
      • D.3.6 #5 (4:35)
      • D.3.6 #6 (5:55)
      • D.3.6 #7 (3:25)
      • D.3.6 #8 (4:44)
      • D.3.6 #9 (4:00)
  • D.4 Empirical Credibility ... lessons ... min of video
    • D.4.1 Non-Parametric Credibility: Uniform Case ...
      • D.4.1 #1 (2:04)
      • D.4.1 #2 (3:22)
      • D.4.1 #3 (2:24)
    • D.4.2 Non-Parametric Credibility: General Case ...
      • D.4.2 #1 (4:23)
      • D.4.2 #2 (1:41)
      • D.4.2 #3 (2:00)
    • D.4.3 Semi-Parametric Credibility: Poisson Case ...
      • D.4.3 #1 (2:33)
      • D.4.3 #2 (1:50)
      • D.4.3 #3 (3:02)
  • TIA Practice Exams (coming in Summer/Fall 2018) ... lessons ... min of video
    • TIA Practice Exams (coming in Summer/Fall 2018) ...
      • TIA Practice Exams (coming in Summer/Fall 2018) (handout)
  • Facebook
  • twitter
  • Home
  • About
  • Support
  • Terms
  • Cancellation Policy
  • Privacy
  • Site Map

© 2018 The Infinite Actuary, LLC

You have worked all the problems for this lesson.

You have finished all the first pass problems for this lesson.

If you are really struggling with this lesson or you have completed all the lessons, then you can click "Work More Problems".

It will give you random problems one-at-a-time.  If you have not finished all the lessons, then Exit when you are more comfortable with this lesson.

Work More Problems
Rework Random Problems
Rework Missed Problems
Work Flagged Problems
Review Worked Problems
Exit to Lessons
Select your preference for video playback:
* Change your preference anytime from the My Stuff page by clicking the "Select Video Format" link noted below
Playback Format Full screen
  Yes
  Yes

Please select when you anticipate to take your exam.

We will use this date to show you stats on how your lesson progress compares with other students preparing for that date.

notice Selecting a date here does not register you for the exam. You must register for the exam using the SOA or CAS website.
Select an exam date:
Select an exact date: « Back
* You can change your date anytime by clicking on Exam Date as noted below

Please select when you began studying or will have started.

This date will be calculated with your exam date to display recommended study dates.

(Note you can change this at any time)