

Infinite actual y.com Learning Without Bounds

- Extract, summarize, and analyze the data needed for a loss development study:
 - Earned Premiums
 - Paid Loss Triangle
 - Reported Loss Triangle
- Extract a claim listing needed to fit a size of loss distribution
- Employ multiple approaches to the same problem and make informed choices between results of different approaches

- Pretend you work for Imagine Insurance and your boss has asked you to provide analysis to support a reinsurance transaction being considered
 - You have a large book of long-tailed US casualty business with policy limits up to \$5,000,000 per occurrence
 - Imagine Insurance is considering purchasing excess of loss reinsurance for the layer \$4,000,000 excess of \$1,000,000
 - Management would like an estimate of the percentage of total losses that would be ceded under this reinsurance coverage
 - You have 10 years worth of detailed policy and claim data in your dataset to use for this analysis

- The book has been very stable
- There are no exposure, frequency, or severity trends
- There have been no changes in coverages or limits written
- The book contains no Worker's Compensation exposures
- There have been no changes in claims handling processes
- The severity distribution for this book is known to be best modeled by the Lognormal distribution

- In P&C and Health, individual claims "develop" over time
 - Lag from time of occurrence until claim reported
 - Lag from time claim reported until final settlement
 - Larger and more complicated claims tend to have longer lags and more volatile development
- Key actuarial task is to estimate the ultimate value of collections of claims based on available data

Accident										
Years	Cumulative Amounts at Various Ages of Development (Months)									
Ending	12	24	36	48	60	72	84	96	108	120
12/31/2005	1	2	3	4	5	6	7	8	9	10
12/31/2006	1	2	3	4	5	6	7	8	9	
12/31/2007	1	2	3	4	5	6	7	8		
12/31/2008	1	2	3	4	5	6	7			
12/31/2009	1	2	3	4	5	6				
12/31/2010	1	2	3	4	5					
12/31/2011	1	2	3	4						
12/31/2012	1	2	3							
12/31/2013	1	2								
12/31/2014	1									

- Various distribution functions are used to model loss severity, most have heavy right tails
- Limited Expected Value (LEV) function can be used to model the relative costs of layers of losses
- LEV for a pdf f(x) limited to d is:

•
$$E[x \wedge d] = \int_0^d x f(x) + d \int_d^\infty f(x)$$