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Bond Forward Prices

Let P(T,T + s) be the time T price of a $1 zero-coupon bond

maturing at time 7'+ s. Then the forward price at time ¢ of a

bond maturing at time 7"+ s and delivered at time 7' is given

by:

P(t, T+ s)

E, r[P(T, T =—*
taT[ ( Y + S)} P(t, T)

The price of a prepaid forward on the bond is of course:

Fp[P(T, T+ s)] = P(t, T + )
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Forward Rates

Let Ri(T, T + s) be the forward rate, i.e. the non-annualized
effective interest rate on a loan one can obtain at time ¢ for a
risk-free loan that starts at time 7" and is repaid at time T+ s.
The forward rate must solve:

1

— F, 7 P(T. T
1+ R(T, T + 5) L[ P(T, T+ 5)]

)

1
T T+s)= _
Ry(T, T +5) Fr[P(T, T+ 5)]

If s = 1, then the formula gives the annual forward rate.
Otherwise, you must annualize it if required.
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Binomial Interest Rate Trees

Consider a binomial tree for continuously compounded interest
rates, where one binomial step is of length A

Tuu
Two notes:
Tu @ Interest rate trees
Tud sometimes don’t recombine
7o
Tdu © Rates in the tree are
Td “forward-looking.” l.e., rg
is the relevant interest rate
Tdd for the period 0 to h
time— 0 h 2h
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Binomial Bond Pricing

Because rates in the tree look forward, to price a bond maturing
at time 7', we need only create a tree out to time T — h

The price of a $1 bond maturing at time T at node j at time
T — his:
P{(T — h,T) = e "i"

Once the bond prices at each node at time T — h are known,
the price of the bond today is the risk-neutral expected present
value of the time 7' — h bond price

@ Note that because interest rates change throughout the tree, the
present value of the time T' — h bond price in a recombining tree
will differ for each unique path to node j

@ Thus, the present value of each time T — h price must be
calculated separately for each unique path to that node
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Binomial Bond Pricing Example

Example

Consider the following tree for continuously compounded
interest rates. Let h = 1 year and the risk-neutral probability of
an up move be 75%. Find P(0, 3).

6.05%

5.5%

5% < 4.95%
4.5%

4.05%

@ Find bond prices at time T'— h
Puu(2,3) — 6_0605
Puq(2,3) = Pg,(2,3) = e 919
Pdd(27 3) = 67'0405
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Binomial Bond Pricing Example

Example (continued)

© Calculate the risk-neutral expected present value of the
time T" — h bond price

P(O, 3) — (('75)267.060567.05567.05
+ .75(.25)6_'04956_0'0556_'05
+ .25(.75)6_'04956_'0456_'05
+ (.25)26_'04056_'0456_'05)

= (.8542

To speed up calculation, note that the price gets
discounted by rg along all paths
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Bond Yields @

A bond’s yield-to-maturity (often simply called its yield) is
the constant per-period discount rate that results in the bond’s
price

E.g., the yield of the 3-year bond in our previous example,
y(0,3), solves:
0.8542 = ¢~ 3¥(03)
In(.8542
y(0,3) = (:8542)

= .0525

Note that a bond’s yield = rg if either of the following is true:
@ A bond matures in one binomial period, or

o Interest rates are constant
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