Binomial Interest Rates - Outline

(1) H.1.1 Bond Pricing Basics

- Bond Forward Contracts
- Binomial Interest Rate Trees
- Bond Yields

Bond Forward Prices

Let $P(T, T+s)$ be the time T price of a $\$ 1$ zero-coupon bond maturing at time $T+s$. Then the forward price at time t of a bond maturing at time $T+s$ and delivered at time T is given by:

$$
F_{t, T}[P(T, T+s)]=\frac{P(t, T+s)}{P(t, T)}
$$

The price of a prepaid forward on the bond is of course:

$$
F_{t, T}^{P}[P(T, T+s)]=P(t, T+s)
$$

Forward Rates

Let $R_{t}(T, T+s)$ be the forward rate, i.e. the non-annualized effective interest rate on a loan one can obtain at time t for a risk-free loan that starts at time T and is repaid at time $T+s$. The forward rate must solve:

$$
\begin{gathered}
\frac{1}{1+R_{t}(T, T+s)}=F_{t, T}[P(T, T+s)] \\
\hat{\Downarrow} \\
R_{t}(T, T+s)=\frac{1}{F_{t, T}[P(T, T+s)]}-1
\end{gathered}
$$

If $s=1$, then the formula gives the annual forward rate. Otherwise, you must annualize it if required.

Binomial Interest Rate Trees

Consider a binomial tree for continuously compounded interest rates, where one binomial step is of length h

Two notes:
(1) Interest rate trees sometimes don't recombine
(2) Rates in the tree are "forward-looking." I.e., r_{0} is the relevant interest rate for the period 0 to h

$$
\text { time } \rightarrow 0 \quad h \quad 2 h
$$

Binomial Bond Pricing

Because rates in the tree look forward, to price a bond maturing at time T, we need only create a tree out to time $T-h$

The price of a $\$ 1$ bond maturing at time T at node j at time $T-h$ is:

$$
P_{j}(T-h, T)=e^{-r_{j} h}
$$

Once the bond prices at each node at time $T-h$ are known, the price of the bond today is the risk-neutral expected present value of the time $T-h$ bond price

- Note that because interest rates change throughout the tree, the present value of the time $T-h$ bond price in a recombining tree will differ for each unique path to node j
- Thus, the present value of each time $T-h$ price must be calculated separately for each unique path to that node

Binomial Bond Pricing Example

Example

Consider the following tree for continuously compounded interest rates. Let $h=1$ year and the risk-neutral probability of an up move be 75%. Find $P(0,3)$.

(1) Find bond prices at time $T-h$

$$
\begin{aligned}
& P_{u u}(2,3)=e^{-.0605} \\
& P_{u d}(2,3)=P_{d u}(2,3)=e^{-.0495} \\
& P_{d d}(2,3)=e^{-.0405}
\end{aligned}
$$

Binomial Bond Pricing Example

Example (continued)

(2) Calculate the risk-neutral expected present value of the time $T-h$ bond price

$$
\begin{aligned}
P(0,3)= & \left((.75)^{2} e^{-.0605} e^{-.055} e^{-.05}\right. \\
& +.75(.25) e^{-.0495} e^{-0.055} e^{-.05} \\
& +.25(.75) e^{-.0495} e^{-.045} e^{-.05} \\
& \left.+(.25)^{2} e^{-.0405} e^{-.045} e^{-.05}\right) \\
= & 0.8542
\end{aligned}
$$

To speed up calculation, note that the price gets discounted by r_{0} along all paths

Bond Yields

A bond's yield-to-maturity (often simply called its yield) is the constant per-period discount rate that results in the bond's price
E.g., the yield of the 3-year bond in our previous example, $y(0,3)$, solves:

$$
\begin{aligned}
& 0.8542=e^{-3 y(0,3)} \\
& y(0,3)=\frac{\ln (.8542)}{-3}=.0525
\end{aligned}
$$

Note that a bond's yield $=r_{0}$ if either of the following is true:

- A bond matures in one binomial period, or
- Interest rates are constant

