Review - Outline

1 A.1.1 Review

• Continuously Compounded Returns

 \odot

If r is quoted as an **effective** annual interest rate, then if you invest X today, in t years you will have $X(1+r)^t$

If r is quoted as a **continuously compounded** annual interest rate, then if you invest X today, in t years you will have Xe^{rt}

If you purchase asset S at time t for price S_t and sell it for price S_{t+h} in the future, then your continuously compounded return on the investment for period h must solve:

 $S_t e^r = S_{t+h}$ $r = \ln(S_{t+h}/S_t)$

An asset's **volatility**, σ , generally refers to the sample standard deviation of its returns. Given returns $r_1, r_2, r_3, ..., r_N$, volatility can be calulated as:

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (r_i - \bar{r})^2}$$

Note that:

• The formula inside the radical gives the sample variance, σ^2

•
$$\bar{r}$$
 is the sample average. I.e., $\bar{r} = \frac{1}{N} \sum_{i=1}^{N} r_i$

3 / 4

Let $r_h, r_{2h}, r_{3h}, ..., r_{nh}$ be the continuously compounded returns measured at frequency h on asset S between times 0 and T, where h = T/n is measured in years. Then:

1 Increases and decreases are symmetric

• If
$$r_h = R$$
 and $r_{2h} = -R$, then $S_{2h} = S_0 e^R e^{-R} = S_0$

2 Returns are additive

•
$$\ln\left(\frac{S_T}{S_0}\right) = \sum_{i=1}^n r_{ih}$$

3 Volatility is proportional to the square root of time

- E.g., let σ_h be the volatility of the returns measured at frequency h. Then $\sigma = \frac{\sigma_h}{\sqrt{h}}$, where σ is the annual volatility.
- This implies variance is proportional to time

The following table gives the month-end prices of a non-dividend paying stock for five consecutive months:

Month	Price
Jan	34
Feb	31
Mar	34
Apr	36
May	37

Estimate the annual volatility for this stock.

A. 7% B. 8% C. 16% D. 24% I. Use calculator to calculate the cont. compounded returns z. Use the stat menu to find $T_{monthly} = .0802$ 3. Annualize the volatility $T_{annual} = T_{monthly} \times \sqrt{12} = 0.2718$