Review - Outline

(1) A.1.1 Review

- Continuously Compounded Returns

Interest Rate Compounding

If r is quoted as an effective annual interest rate, then if you invest $\$ X$ today, in t years you will have $X(1+r)^{t}$

If r is quoted as a continuously compounded annual interest rate, then if you invest $\$ X$ today, in t years you will have $X e^{r t}$

If you purchase asset S at time t for price S_{t} and sell it for price S_{t+h} in the future, then your continuously compounded return on the investment for period h must solve:

$$
\begin{aligned}
S_{t} e^{r} & =S_{t+h} \\
r & =\ln \left(S_{t+h} / S_{t}\right)
\end{aligned}
$$

Return Volatility

An asset's volatility, σ, generally refers to the sample standard deviation of its returns. Given returns $r_{1}, r_{2}, r_{3}, \ldots, r_{N}$, volatility can be calulated as:

$$
\sigma=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(r_{i}-\bar{r}\right)^{2}}
$$

Note that:

- The formula inside the radical gives the sample variance, σ^{2}
- \bar{r} is the sample average. I.e., $\bar{r}=\frac{1}{N} \sum_{i=1}^{N} r_{i}$

Properties of Continuously Compounded Returns

Let $r_{h}, r_{2 h}, r_{3 h}, \ldots, r_{n h}$ be the continuously compounded returns measured at frequency h on asset S between times 0 and T, where $h=T / n$ is measured in years. Then:
(1) Increases and decreases are symmetric

- If $r_{h}=R$ and $r_{2 h}=-R$, then $S_{2 h}=S_{0} e^{R} e^{-R}=S_{0}$
(2) Returns are additive
- $\ln \left(\frac{S_{T}}{S_{0}}\right)=\sum_{i=1}^{n} r_{i h}$
(3) Volatility is proportional to the square root of time
- E.g., let σ_{h} be the volatility of the returns measured at frequency h. Then $\sigma=\frac{\sigma_{h}}{\sqrt{h}}$, where σ is the annual volatility.
- This implies variance is proportional to time

The following table gives the month-end prices of a non-dividend paying stock for five consecutive months:

Month	Price
Jan	34
Feb	31
Mar	34
Apr	36
May	37

Estimate the annual volatility for this stock.
A. 7\%
B. 8%
C. 16%
D. 24%
(E) 28%

1. Use calculator to calculate the cont. compounded returns
2. Use the stat menu to find $\sigma_{\text {monthly }}=.0802$
3. Annualize the volatility

$$
\sigma_{\text {annual }}=\sigma_{\text {monthly }} \times \sqrt{12}=0.2778
$$

