FPT Method

FPT = Modified NLP Method with a formulaic expense allowance

$${}_{t}V_{x}^{FPT} = {}_{t}V_{x}^{NLP} - {}_{t}VE_{x} = PVFB_{t} - \underbrace{(PVPB_{t} + PVPE_{t})}_{PVNP_{t}}$$

$${}_{t}VE_{x} = PVPE_{t} = PE_{0} \times \ddot{a}_{x+t}$$

$$PE_{0} = \frac{EA_{x}}{\ddot{a}_{x}}$$

$$EA \neq \text{actual expenses} \\ {}_{0}V_{x}^{FPT} = {}_{1}V_{x}^{FPT} = 0 \\ {}_{t}V_{x}^{FPT} \leq {}_{t}V_{x}^{NLP}$$

$$EA_{x} = NP_{1} - c_{x} = \left(\frac{PVFB_{1}}{\ddot{a}_{x+1}}\right) - c_{x}$$

$$c_{x} = v \cdot q_{x} \cdot DB = \text{first-year cost of insurance}$$

$$NP_{t} = \begin{cases} c_{x} & \text{for } t = 0 & (\alpha) \\ PB_{t} + PE_{t} = \frac{PVFB_{1}}{\ddot{a}_{x+1}} \cdot r_{t}^{GP} & \text{for } t \geq 1 & (\beta) \end{cases}$$

SVILAC Ch. 11, Lesson 1: Valuation Methodologies

Common Statutory Reserve Methodologies

5 / 27

This is a sample handout. Full version available in the online seminar

SVILAC Ch. 11, Lesson 1: Valuation Methodologies

Common Statutory Reserve Methodologies

Examples With Level Gross Premiums Example Contract Task 1: Determine NLP Reserve Task 2: Determine FPT Reserve

Example With Non-Level Gross Premiums

Commissioners Reserve Valuation Method (CRVM)

Example Contract (5-Year Term)

Assumptions:

Issue age = 55	t	x	q_{55+t}
Death benefit = 100,000	0	55	0.0053
Benefit period = 5 years	1	56	0.0064
Promium posing poriod – E voore	2	57	0.0077
r remum paying period = 5 years	3	58	0.0090
Gross premium per $1000 = 9$	4	59	0.0101

• Valuation interest rate = 5%

SVILAC Ch. 11, Lesson 1: Valuation Methodologies Examples With Level Gross Premiums

Task 1: Determine NLP Reserve

Determine the NLP reserve for all policy years the contract is in force.

7 / 27

Task 1 Solution

For all years:

$${}_{t}V_{55}^{NLP} = \text{PVFB}_{t} - NP_{0} \cdot \ddot{a}_{55+t:\overline{5-t}}$$
$$\text{PVFB}_{t} = 100,000A_{55+t:\overline{5-t}}$$

 $NP_0 = \left(\frac{\text{PVFB}_0}{\ddot{a}_{55:\overline{5}|}}\right)$ $= \frac{3234.86}{4.4905}$

= 720.37

Since the GP is level, $NP_t = NP_0$

t:5-t		2	57	0.0077	0.9883	2,401.34	2.8370	
		3	58	0.0090	0.9807	1,765.00	1.9438	
		4	59	0.0101	0.9719	961.90	1.0000	
0:	-							
	Ye	ar 3	samp	ole calcula	ations (otl	ner ways po	ssible too!):	
					Γ 0.0090(0	0.9807) _ 0.0	101(0.9719) 7	

 q_{55+t}

0.0053

0.0064

t

0

1

2

х

55

56

$$PVFB_{3} = 100,000 \left[\frac{\frac{0.0090(0.9807)}{1.05} + \frac{0.0101(0.9719)}{1.05^{2}}}{0.9807} \right]$$
$$= 1,765$$

*tp*55

1.0000

0.9947

$$\ddot{a}_{58:\overline{2}|} = \frac{0.9807 + \frac{0.9719}{1.05}}{0.9807} = 1.94$$

Examples With Level Gross Premiums

Rounding differences within a few cents are likely and <u>not</u> important.

```
SVILAC Ch. 11, Lesson 1: Valuation Methodologies
```

Task 1 Solution Summary

t	x	PVFB _t	—	NP_0	Х	$\ddot{a}_{55+t:\overline{5-t}}$	=	$_{t}V_{55}^{NLP}$
0	55	3,234.86	—	720.37	×	4.4905	=	0.00
1	56	2,881.88	—	720.37	\times	3.6846	=	227.60
2	57	2,401.34	_	720.37	\times	2.8370	=	357.65
3	58	1,765.00	—	720.37	\times	1.9438	=	364.73
4	59	961.90	_	720.37	\times	1.0000	=	241.53
5	60							0.00

Retrospective approach:

$${}_{1}V_{55}^{NLP} = \frac{(0+720.37)(1.05) - 0.0053(100,000)}{1-0.0053} = 227.60$$
$${}_{2}V_{55}^{NLP} = \frac{(227.60+720.37)(1.05) - 0.0064(100,000)}{1-0.0064} = 357.65$$

etc.

 $\ddot{a}_{55+t:\overline{5-t}}$

4.4905

3.6846

PVFB_t

3,234.86

2,881.88

Task 2: Determine FPT Reserve

Determine the FPT reserve for the same contract.

SVILAC Ch. 11, Lesson 1: Valuation Methodologies

Task 2 Solution – Getting the Net Premiums

For all years:

$$_{t}V_{55}^{FPT} = _{t}V_{55}^{NLP} - _{t}VE_{55} = _{t}V_{55}^{NLP} - PE_{0}\ddot{a}_{55+t}$$

 $_tVE_x = PV$ of PEs, which we need the EA to determine:

$$EA_{55} = \left(\frac{PVFB_{1}}{\ddot{a}_{56:\overline{4}|}}\right) - c_{55}$$

$$= \frac{2881.88}{3.6846} - \frac{0.0053(100,000)}{1.05}$$

$$= \frac{782.14}{NP_{1}} - \underbrace{504.76}_{c_{55}} = 277.38$$

$$PE_{0} = \frac{EA_{55}}{\ddot{a}_{55:\overline{5}|}} = \frac{277.38}{4.4905} = 61.77$$

$$NP_{1} = PB_{0} + PE_{0} = 720.37 + 61.77 = 782.14 = PB_{0} \text{ for age } 56$$

SVILAC Ch. 11, Lesson 1: Valuation Methodologies

Examples With Level Gross Premiums

12 / 27

Task 2 Solution: Unamortized EA

The unamortized EA is essentially a reserve for (formulaic) costs recognized at issue

t	x	EA_{55}	_	PE_0	\times	$\ddot{a}_{55+t:\overline{5-t}}$	=	$_{t}VE_{55}$
0	55	277.38	—	61.77	×	4.4905	=	0.00
1	56	0.00	—	61.77	×	3.6846	=	-227.60
2	57	0.00	—	61.77	\times	2.8370	=	-175.24
3	58	0.00	_	61.77	\times	1.9438	=	-120.07
4	59	0.00	_	61.77	\times	1.0000	=	-61.77
5	60						=	0.00

SVILAC Ch. 11, Lesson 1: Valuation Methodologies

Examples With Level Gross Premiums

Same as NI P

Task 2 Solution: Relationship Between NLP and FPT Reserve

L		TZNLP				тzFPT		DIVER				
l	х	$t V_{55}$	_	t V E55	=	$t V_{55}$	=	ΓVΓD _t	_	$(PD_0 + PL_0)$	X	$u_{55+t:\overline{5-t}}$
0	55	0.00	_	0.00	=	0.00						
1	56	227.60	—	227.60	=	0.00	=	2,881.88	—	(720.37 + 61.77)	\times	3.6846
2	57	357.65	—	175.24	=	182.41	=	2,401.34	—	(720.37 + 61.77)	\times	2.8370
3	58	364.73	—	120.07	=	244.67	=	1,765.00	_	(720.37 + 61.77)	×	1.9438
4	59	241.53	—	61.77	=	179.76	=	961.90	—	(720.37 + 61.77)	×	1.0000
5	60	0.00			=	0.00						

In the first policy year, the FPT $NP_0 = \alpha = c_x$

$${}_{0}V_{55}^{FPT} = PVFB_{0} - PVNP_{0}$$

= PVFB_{0} - (c_{55} + v_{1}p_{55}PVNP_{1})
= 3234.86 - \left(504.76 + \frac{0.9947}{1.05}(782.14 \times 3.6846)\right)
= 0

Task 2 Solution: Retrospective View

SVILAC Ch. 11, Lesson 1: Valuation Methodologies

Examples With Level Gross Premiums

SVILAC Ch. 11, Lesson 1: Valuation Methodologies

Common Statutory Reserve Methodologies

Examples With Level Gross Premiums

Example With Non-Level Gross Premiums Task 3: Determine FPT Reserve Assuming Non-Level Premiums

Commissioners Reserve Valuation Method (CRVM)