Probability: Conditional Moments
Conditional Probability
Bayes' Theorem
Law of Total Probability
Conditional Expectation
Double Expectation
Law of Total Variation

Conditional Probability

$$
\begin{aligned}
& P[A \mid B]=\frac{P[A B]}{P[B]} f_{x / y}(x \mid y)=\frac{f_{x, y}(x, y)}{f_{y}(y)} \\
& P[B] \cdot P[A \mid B]=P[A B] \\
& P[A] \cdot P[B \mid A]^{\prime \prime}
\end{aligned}
$$

Bayes' Theorem

$$
P[A \mid B]=\frac{P[A] P[B \mid A]}{P[B]}
$$

Law of Total Probability
Suppose B_{1}, \ldots, B_{n} are a partition of the probability space, ie. $B_{j} \cap B_{j}=\varnothing$ for all i, j, and $\sum P\left[B_{i}\right]=1$

Then $P[A]=\sum P[A B i]$

$$
=\sum P\left[B_{i}\right] \cdot P\left[A \mid B_{i}\right]
$$

Continuous

$$
P[A]=\int_{-\infty}^{\infty} P[A \mid X=x] f(x) d x
$$

Conditional Mean (discrete case)

$$
\begin{aligned}
& E[Y \mid A]=\sum_{y} y^{P}[Y=y \mid A] \\
& E[Y \mid X=x]=\sum_{y} y P[Y=y \mid X=x]
\end{aligned}
$$

$E[Y \mid X]$ is a function of X $E[Y]$ is a number
Double Expectation

$$
E[Y]=E[E[Y \mid X]]
$$

Example
You are given that N has a Poisson distribution with mean 2. Find $\mathrm{E}[N \mid N \leq 2]$.

$$
P[N=0 \mid N \leq L]=\frac{P[N=0, N \leq 2]^{n!}}{P[N \leq 2]}=\frac{e^{-2}}{e^{-2}\left[1+2+\frac{2^{2}}{2}\right]}
$$

n	$P[N=n \mid N \leq 2]$
0	$\frac{1}{5}$
1	$\frac{2}{5}$
2	$\frac{2}{5}$

$$
\begin{aligned}
& E[N \mid N E L] \\
= & 0 \cdot \frac{1}{5}+1 \cdot \frac{2}{5}+2 \cdot \frac{2}{5} \\
= & \frac{6}{5}
\end{aligned}
$$

Let N be the value rolled by a fair six-sided die. Suppose that I then flip N independent fair coins. What is the expected number of heads? $=H$
A. $1 / 4$
B. $3 / 4$
C. $3 / 2$
D. $7 / 4$
E. $7 / 2$

Note: if N was fixed, it would be easy, so want to use double expectation.

$$
\begin{aligned}
& E[H \mid N]=\frac{N}{2} \\
& E H=E[E[H \mid N]]=E\left[\frac{N}{2}\right] \\
&=\frac{1}{2} \frac{7}{2}=\frac{7}{4}
\end{aligned}
$$

Law of Total Variation
Double expectation still wolfs for the second raw moment

$$
E\left[X^{2}\right]=E\left[E\left[x^{2} \mid Y\right]\right]
$$

Warning! $\operatorname{Var}[X] \neq E[\operatorname{Var}(Y(X)]$

$$
\operatorname{Var}(X \mid Y)=E([X-\underbrace{E(X \mid Y)}_{Y}]^{2} \mid Y)
$$

will vary as Y varies
$\frac{\text { Example: }}{\operatorname{Var}(x, y)}: X=Y, \quad Y \sim N(0,1)$

$$
\operatorname{Var}(x \mid y)=0
$$

$B_{\text {ot }} \operatorname{Var} X=\operatorname{Var} Y=1 \neq E[\operatorname{Var}(X(y)]=E[0]=0$

Law of Total Variation

$$
\operatorname{Var} X=\underbrace{\operatorname{Var}[E[X \mid Y]]}_{\substack{E[\operatorname{Var}(X \mid Y)] \\ \text { expected } \\ \text { process } \\ \text { variance }}}
$$

(Based on $[110 . \mathrm{F} 86.41])$ Let $\mathrm{E}[X \mid Y=y]=3 y, \operatorname{Var}[X \mid Y=y]=2$ and let Y be an exponential random variable with mean 1. What is $\operatorname{Var}[X]$?
A. 3
B. 5
C. 9
D. 11
E. 20

$$
\begin{aligned}
\operatorname{Var} X & =E[\operatorname{Var}(X \mid Y=y)]+\operatorname{Var}[E[X(Y=y]] \\
& =E[2]+\operatorname{Var}[3 Y] \\
& =2+3^{2} \operatorname{Var}(Y) \\
& =2+9 \cdot 1^{2} \\
& =11
\end{aligned}
$$

