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Definition of Derivative (Background Only)

x

f(x)

f(x+ h)

x+ h

The average rate of change
from x to x+ h is

=
total change

length of interval

=
f(x+ h)− f(x)

h

The derivative is the
instantaneous rate of change

= lim
h→0

f(x+ h)− f(x)

h

=
f(x+ dx)− f(x)

dx
=
df

dx
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Example

The definition is typically cumbersome to use.
For example,

d

dx
x2 = lim

h→0

(x+ h)2 − x2

h

= lim
h→0

(
x2 + 2xh+ h2

)
− x2

h

= lim
h→0

2xh+ h2

h

= lim
h→0

(2x+ h)

= 2x

Instead of always doing this, in practice people use a smaller
number of key formulas.
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Basic Formulas

d

dx
f(x) = f ′(x)

d

dx
a = 0 for any constant a

d

dx
xn = nxn−1

d

dx
[ln(x)] =

1

x
d

dx
ex = ex

d

dx
[f(x) + g(x)] = f ′(x) + g′(x)

d

dx
[c f(x)] = c

d

dx
f(x) = cf ′(x)

B.0 One Dimensional Calculus B.0.1 One-Dimensional Derivatives 4 / 42



Basic Formulas: Examples

d

dx
x3 = 3x2

d

dy
3y2 = 3 · 2y1 = 6y

d

dt

(
5et + 3t4

)
= 5et + 3 · 4t3

d

ds

2

s3
=

d

ds
2s−3

= −6s−4

=
−6

s4
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Chain Rule

Theorem (Chain Rule)

If f and u are differentiable functions,

d

dx
[f(u)] = f ′(u) · du

dx

Examples

d

dx
un = nun−1

du

dx
d

dx
eu = eu · du

dx
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Chain Rule: Examples

Suppose we want to find
d

dt
exp

[
−2t+ t2

]
. Let u = −2t+ t2.

d

dt
exp

[
−2t+ t2

]
=

d

dt
exp [u]

= exp [u] · du
dx

= exp
[
−2t+ t2

]
· (−2 + 2t)

d

dx

(
2x2 + 5x+ 3

)5
= 5

(
2x2 + 5x+ 3

)4 ·(4x+ 5)

d

dt
exp

[
5et − 5 + 3t

]
=
(
exp

[
5et − 5 + 3t

])
·
(
5et + 3

)
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Chain Rule: Examples

Suppose we want to find
d

dx
2x. We know how to find

d

dx
ex,

so let’s rewrite 2x in terms of ex.

2 = eln(2), 2x =
(
eln(2)

)x
= ex ln(2)

d

dx
2x =

d

dx
ex ln(2) = ln(2) · ex ln(2) = (ln 2) · 2x

More generally, for any a,

d

dx
ax =(ln a) · ax

d

dx
2x

3−3x =
d

dx
2u u = x3 − 3x

= 2u · ln(2) · du
dx

= 2

(
x3−3x

)
· ln(2) ·

[
3x2 − 3

]
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Product Rule

What about the derivatives of products or quotients of two
functions?

u du

v

dv

uv

u · dv

du · v

tiny

d

dx

[
u · v

]
= u · dv

dx
+
du

dx
· v

(uv)′ = u · v′ + u′ · v

Quotients can be done by
rewriting them as products

d

dx

[
u · 1

v

]
= u · d

dx

1

v
+ u′ · 1

v

=
−u v′

v2
+
u′

v

=
−uv′ + u′v

v2
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Product Rule Examples

d

dx

[
x2e3x

]
= x2 · 3e3x + 2x · e3x

d

dx

e−x

x3
=

d

dx

[
e−x · x−3

]
= e−x · −3

x4
+ (−e−x) · 1

x3

d

dx

[(
x2 + 3x+ 5

)3 · e4x] =
(
x2 + 3x+ 5

)3 · d
dx
e4x

+
d

dx

[(
x2 + 3x+ 5

)3] · e4x
=
(
x2 + 3x+ 5

)3 · 4e4x
+ 3 · (x2 + 3x+ 5)2 · (2x+ 3) · e4x
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Absolute Values

x

y

|x| |x| = x if x ≥ 0

|x| = −x if x < 0

d

dx
|x| =

{
1 x > 0

− 1 x < 0

Note that
d|x|
dx

is

undefined if x = 0.
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Sines and Cosines

x

cos(x)

x

sin(x)

d

dx
cos(x) = − sin(x)

d

dx
sin(x) = cos(x)
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Further Examples

d

dx

2x+ 5

x2 − 3x+ 4
= (2x+ 5)

(−1)(2x− 3)

(x2 − 3x+ 4)2
+

2

x2 − 3x+ 4

d

dx
(x+ 2)ex

2−5x = (x+ 2)(2x− 5)ex
2−5x + 1 · ex2−5x

d

dx
x2e−3x

2
= x2(−6x)e−3x

2
+ 2x · e−3x2

B.0 One Dimensional Calculus B.0.1 One-Dimensional Derivatives 13 / 42

Further Examples

d

dx
sin |x+ 2| = d

dx
sin(x+ 2) if x+ 2 > 0

= cos(x+ 2) x > −2

d

dx
sin |x+ 2| = d

dx
sin(−x− 2) if x+ 2 < 0

= − cos(−x− 2) x < −2

Key point: We get two cases based on whether or not what is
inside the absolute value is positive. If x+ 2 > 0 then what is
inside the absolute value is positive, so |x+ 2| = x+ 2, while if
x+ 2 < 0 then what is inside the absolute value is negative so
|x+ 2| = −x− 2.

B.0 One Dimensional Calculus B.0.1 One-Dimensional Derivatives 14 / 42



B.0 One Dimensional Calculus - Outline

B.0.1 One-Dimensional Derivatives

B.0.2 1-Dimensional integrals
What is an Integral?
The Fundamental Theorem of Calculus
Common Formulas
Substitution
Other Formulas

B.0.3 Integration By Parts

B.0 One Dimensional Calculus B.0.2 1-Dimensional integrals 15 / 42

Definition of an Integral

x+ dxxa b

(x, f(x))

x

f(x)

b∫
a

f(x) dx = area under curve

In some sense, f(x) dx is the area of an infinitely thin rectangle
and the integral says that the area under the curve is the sum
of the areas of infinitely many of these thin rectangles.
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Geometric Examples

Often we can use geometry to find the integral/area under the
curve.

x

f(x)

2

a

∫ a

0
2dx = 2a

x

f(x)

a

∫ a

0
xdx =

a2

2
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Geometric Examples

In that example,

1. The integral of a constant was a linear function.

2. The integral of a line was a quadratic function.

So in these two examples, when we integrated the power of a
polynomial increased by 1.

When we differentiate,

1. The derivative of a linear function is a constant.

2. The derivative of a quadratic function is linear.

More generally, when we differentiate the power of a polynomial
decreases by 1. That is the opposite of when we integrate.

Hmmm.......isn’t that an interesting coincidence?
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The Fundamental Theorem of Calculus

a x x+ h
t

f(t)

d

dx
F (x) =

d

dx

x∫
a

f(t) dt = lim
h→0

x+h∫
a
f(t) dt−

x∫
a
f(t) dt

h

= lim
h→0

f(x) · h
h

= f(x)
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The Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus)

d

dx

x∫
a

f(t) dt = f(x)

Generalization: If v and u are functions,

d

dx

v∫
a

f(t) dt = f(v)
dv

dx

d

dx

v∫
u

f(t) dt = f(v)
dv

dx
− f(u)

du

dx

In words, the Fundamental Theorem of Calculus says that
derivatives and integrals are inverse operations.
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Evaluating Integrals

The Fundamental Theorem of Calculus says that derivatives
and integrals are inverse operations. To find the integral of
f(x), we need to find a function whose derivative is f(x).

Examples

∫ 5

0
x dx =

1

2
x2
∣∣∣∣5
0

=
52

2
− 02

2
=

25

2

b∫
a

xn dx =
1

n+ 1
· xn+1

∣∣∣∣b
a

=
bn+1

n+ 1
− an+1

n+ 1
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Common Formulas

∫
a dx = ax+ C∫
x dx =

x2

2
+ C∫

xn dx =
xn+1

n+ 1
+ C for n 6= −1∫

ebx dx =
1

b
ebx + C∫

ax dx =

∫
ex ln a dx

=
1

ln a
ax + C
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Examples

∫ 5

−2
3x4 dx = 3 · x

5

5

∣∣∣∣5
−2

= 3 · 55

5
− 3 · (−2)5

5∫ ∞
2

3

x4
dx =

3

x3
· 1

−3

∣∣∣∣∞
2

=
−1

∞3
− −1

23

= 0 +
1

8
=

1

8
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Substitution

When we differentiate, we often have nested functions and need
to use the chain rule. For example,

d

dx
ex

2
= ex

2 · 2x

d

dx
(x2 + 3)5 = 5(x2 + 3)4 · 2x

In both those examples, the 2x factor comes from the chain
rule. Often when we are doing integration, we will have a term
that we need to somehow recognize as a chain rule factor. If we
can do that, we can do a substitution to do the chain rule
“backwards.”
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Substitution

Suppose we want to integrate 2x · e(x2). Let u = x2. Then
du

dx
= 2x so du = 2x dx and we get

x=b∫
x=a

2x e(x
2) dx =

u=b2∫
u=a2

eu du

= eu
∣∣∣u=b2
u=a2

= e(x
2)
∣∣∣x=b
x=a

= eb
2 − ea2

Note the limits! Either we convert back to x at the end, or we
change the limits to be in terms of u.
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Substitution Examples

∫ ∞
2

xe−2x
2
dx u = 2x2 du = 4x dx

x = 2 u = 2 · 22 = 8

x =∞ u = 2 · ∞2 =∞

=

∞∫
8

e−u · du
4

=
1

4
· (−1) · e−u

∣∣∣∣∞
8

= 0− −1

4
e−8

=
1

4
e−8
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Other Formulas

∫
dx

x
= lnx+ C∫

cf(x) dx = c

∫
f(x) dx∫ [

f(x) + g(x)
]
dx =

∫
f(x) dx+

∫
g(x) dx∫

cos x dx = sin x+ C because
d

dx
sinx = cosx∫

sin x dx = − cos x+ C because
d

dx
cosx = − sinx
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Examples

u = x+ 5 x = 2, u = 2 + 5 = 7

du = dx x = 5, u = 5 + 5 = 10

∫ 5

2

3x

(x+ 5)2
dx =

∫ 10

7

3(u− 5)

u2
du

=

∫ 10

7

3

u
− 15

u2
du

=

(
3 lnu+

15

u

)∣∣∣∣10
7

=

(
3 ln 10 +

15

10

)
−
(

3 ln 7 +
15

7

)
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Examples

∫ π

0
(1 + cos t)dt = t+ sin t

∣∣∣π
0

= (π + 0)− (0 + 0) = π

5∫
−2

|x| dx =

0∫
−2

−x dx+

5∫
0

x dx

=
−x2

2

∣∣∣∣0
−2

+
x2

2

∣∣∣∣5
0

=
(−2)2

2
+

25

2
=

29

2

d

dx

x3∫
−2x

e5t−5dt = e5x
3−5 · 3x2 − e5(−2x)−5(−2)
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Integration By Parts

Integration by parts is doing the product rule backwards.

d

dx
uv = u · dv

dx
+
du

dx
· v∫

d (uv) = uv =

∫
u dv +

∫
v du∫

u · dv = uv −
∫
v du
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Integration By Parts

Example

∫
x ex dx =

∫
u dv

u = x

du = dx

dv = ex dx

v = ex

so∫
x ex dx = uv −

∫
vdu

= xex −
∫
ex dx

= xex − ex + C
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Logarithms

You can use integration by parts to handle functions whose
derivatives are easier to find than their integrals.

∫
lnx dx =

∫
u dv

u = lnx

du =
dx

x

dv = dx

v = x

so∫
lnx dx = uv −

∫
vdu

= (lnx)x−
∫
x
dx

x

= x lnx− x+ C
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Logarithms

∫
x lnx dx =

∫
u dv

u = lnx

du =
dx

x

dv = x dx

v =
x2

2
so∫

xlnx dx = uv −
∫
vdu

=
x2

2
lnx−

∫
x2

2x
dx

=
x2

2
lnx− x2

4
+ C
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Which Part to Use

How do we choose u and dv? We need dv to be something that
is easy to integrate and we need u to be something that is easy
to differentiate.
Ideally we also want u to become simpler when you differentiate.

Easy to Easy to
Differentiate Integrate

Logs Polynomials Exponentials
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Integration by parts

Iterated Parts

∫
x2e2x dx Let u = x2

du = 2x dx

dv = e2x dx

v =
1

2
e2x

= x2 · 1

2
e2x −

∫
1

2
e2x 2x dx

=
1

2
x2 e2x −

∫
x e2x dx

And to find this, we have to repeat integration by parts.
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Tabular integration
Tabular integration is a way to organize our work when doing
repeated integration by parts. To integrate x2e2x,

Derivative column Integral column

x2 e2x

2x
1

2
e2x

2
1

4
e2x

0
1

8
e2x

+

−

+

−

∫
x2 e2x dx = x2 · 1

2
e2x − 2x · 1

4
· e2x + 2 · 1

8
e2x − 0
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The Gamma trick
If we have a definite integral from 0 to infinity, we often can
skip using integration by parts.
If b > 0 and a is an integer, then

∞∫
0

xa · e−bxdx =
a!

ba+1

Example ∫ ∞
0

x2 e−2xdx =
2!

22+1
=

1

4

−b= −2 b = 2

a= 2
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The Gamma trick

An example both ways:

∫ ∞
0

4x2 e−x/3dx

Derivative column Integral column

4x2 e−x/3

8x − 3 e−x/3

8 9 e−x/3

0 − 27 e−x/3

+

−

+

So

∫
4x2e−x/3dx is

(4x2)(−3 e−x/3)− (8x)(9 e−x/3) + 8 · (−27 e−x/3)

= (−12x2 − 72x− 8 · 27) e−x/3
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The Gamma trick

∫ ∞
0

4x2e−x/3 = (−12x2 − 72x− 8 · 27)e−x/3
∣∣∣∞
0

=8 · 27

or we can let b = 1/3 and a = 2 in our formula to get∫ ∞
0

xae−bx =
a!

ba+1∫ ∞
0

x2e−x/3 =
2!

(1/3)2+1
= 2 · 27∫ ∞

0
4x2e−x/3 =4 · 2!(

1
3

)2+1 = 8 · 27
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Other Definite Integrals∫ ∞
1

4x2 e−x/3 We want u = 0 when x = 1

u = x− 1, x = u+ 1

=

∞∫
0

4(u+ 1)2 e(−u−1)/3du

= 4 e−1/3
∞∫
0

(
u2 + 2u+ 1

)
e−u/3 du

and now we plug into

∞∫
0

xa e−bx =
a!

ba+1

= 4 e−1/3

[
2!(
1
3

)3 + 2 · 1(
1
3

)2 +
1
1
3

]
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The Gamma trick

Idea of Proof:

Let u = xa and dv = e−bxdx∫ ∞
0

xae−bxdx = xa · −1

b
e−bx

∣∣∣∣∣
∞

0

−
∫ ∞
0

axa−1
(
−1

b

)
e−bxdx

= 0− 0 +
a

b

∫ ∞
0

xa−1e−bxdx

=
a

b
· (a− 1)!

ba−1+1

=
a!

ba+1

It also is related to E [Xa] when X is an exponential random
variable as well as the density of a Gamma random variable.
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