B.1 Poisson Processes

EXPONENTIAL R. V. $X \sim \operatorname{Exp}(\theta = 1/\lambda)$ $f(x) = \frac{1}{\theta} e^{-x/\theta} = \lambda e^{-\lambda t}$ $E[X] = mean = \theta, \lambda = 1/\theta = rate$ $S(x) = \mathbf{P}[X > x] = e^{-\lambda x} = e^{-x/\theta}$ Memoryless Property : $P[X > x + a \mid X > a] = P[X > x]$ $\mathbf{E}[X - a \mid X > a] = \mathbf{E}[X]$ $\mathbf{E}[X \mid X > a] = \mathbf{E}[X] + a$ $\operatorname{Var}[X \mid X > a] = \operatorname{Var}[X] = \theta^2$ Sum of $n \operatorname{Exp}(\theta) \sim \operatorname{Gamma}(\alpha = n, \theta)$ $X_i \sim \operatorname{Exp}(\lambda_i), i = 1, \dots, n$ $P[\min\{X_1, X_2, \ldots\} = X_i] = \frac{\lambda_i}{\lambda_1 + \lambda_2 + \ldots + \lambda_n}$ $\min\{X_1,\ldots,X_n\}\sim \operatorname{Exp}(\theta=1/\lambda)$ where $\lambda = \lambda_1 + \lambda_2 + \ldots + \lambda_n$ $\min\{X_1,\ldots,X_n\}$ is independent of the ordering of the X_i . $\max\{X_1, X_2\} = X_1 + X_2 - \min\{X_1, X_2\}$

POISSON PROCESS DEFINITION	
-Counting Process	
-N(0) = 0	
-Independent Increments	
$-\#$ events in [a,b] ~ Poisson $(\lambda(b-a))$	
-Stationary, if $\lambda(t) = \lambda$,	
	-

INTERARRIVAL TIMES	N
T_n = time between $(n-1)$ st arrival and <i>n</i> th.	λ
$T_n \sim \text{exponential with mean } \theta = 1/\lambda$	-
$\mathbf{E}[T_n] = 1/\lambda$	
$\operatorname{Var}[T_n] = 1/\lambda^2$	С
	E
WAITING TIME	
$S_n =$ Time until <i>n</i> th event.	
$S_n = \sum_{i=1}^n T_i$	St
$S_n \sim \text{Gamma}\left(\alpha = n, \theta = 1/\lambda\right)$	
$\mathbf{P}[S_n \le t] = \mathbf{P}[N(t) \ge n]$	
$\mathbf{E}[S_n] = n/\lambda$	N
$\operatorname{Var}[S_n] = n/\lambda^2$	
CLASSIFIED EVENTS	

- If arrivals are classified
 - \rightarrow Independent Poisson Processes
- Ex. Next arrival type A w/ prob. p,

type B w/ prob. q

Type A arrivals

- ~ Poisson process with rate λp Type B arrivals
- ~ Poisson process with rate λq The two processes are independent!

P[exactly n type A before m type B]

= P[Neg. Bin.(m,p) = n] $= \binom{n+m-1}{n} p^n q^m$

NONHOMOGENEOUS P.P.

```
(t) varies in time
```

-# events in [a,b] ~ Poisson $\left(\int_a^b \lambda(t) dt\right)$

COMPOUND P.P.

Each Arrival carries some random value

$$S =$$
Total cost by time t

$$S = \sum_{i=1}^{N} X_i; N \sim \text{Poisson}, X_i$$
's i.i.d

stationary case:

$$\mathbf{E}[S] = \lambda t \mathbf{E}[X],$$

$$\operatorname{Var}[S] = \lambda t \mathbf{E}[X^2]$$

Nonhomogeneouse case:

$$E[S] = \left(\int_0^t \lambda(s) ds\right) E[X],$$
$$Var[S] = \left(\int_0^t \lambda(s) ds\right) E[X^2]$$

SUMS of PROCESSES

 $(N_1(t), \lambda_1), (N_2(t), \lambda_2)$ independent processes $N(t) = N_1(t) + N_2(t)$ is a Poisson process with rate $\lambda_1 + \lambda_2$ Each arrival of $N_1(t)$ has value $X_i \sim F_1(x)$ Each arrival of $N_2(t)$ has value $Y_i \sim F_2(x)$ $\sum_{i=1}^{N_1(t)} X_i + \sum_{j=1}^{N_2(t)} Y_j$ is a Compound P.P. with rate $\lambda_1 + \lambda_2$ and arrival distribution $F(x) = \frac{\lambda_1}{\lambda_1 + \lambda_2} F_1(x) + \frac{\lambda_2}{\lambda_1 + \lambda_2} F_2(x)$