B. 1 Poisson Processes

EXPONENTIAL R. V.

$X \sim \operatorname{Exp}(\theta=1 / \lambda)$
$f(x)=\frac{1}{\theta} e^{-x / \theta}=\lambda e^{-\lambda t}$
$\mathrm{E}[X]=$ mean $=\theta, \lambda=1 / \theta=$ rate
$S(x)=\mathrm{P}[X>x]=e^{-\lambda x}=e^{-x / \theta}$
Memoryless Property :
$\mathrm{P}[X>x+a \mid X>a]=\mathrm{P}[X>x]$
$\mathrm{E}[X-a \mid X>a]=\mathrm{E}[X]$
$\mathrm{E}[X \mid X>a]=\mathrm{E}[X]+a$
$\operatorname{Var}[X \mid X>a]=\operatorname{Var}[X]=\theta^{2}$
Sum of $n \operatorname{Exp}(\theta) \sim \operatorname{Gammma}(\alpha=n, \theta)$
$X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right), i=1, \ldots, n$
$\mathrm{P}\left[\min \left\{X_{1}, X_{2}, \ldots\right\}=X_{i}\right]=\frac{\lambda_{i}}{\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}}$
$\min \left\{X_{1}, \ldots, X_{n}\right\} \sim \operatorname{Exp}(\theta=1 / \lambda)$
where $\lambda=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}$
$\min \left\{X_{1}, \ldots, X_{n}\right\}$ is independent of the ordering of the X_{i}.
$\max \left\{X_{1}, X_{2}\right\}=X_{1}+X_{2}-\min \left\{X_{1}, X_{2}\right\}$

POISSON PROCESS DEFINITION

-Counting Process
$-\mathrm{N}(0)=0$
-Independent Increments
-\# events in $[\mathrm{a}, \mathrm{b}] \sim \operatorname{Poisson}(\lambda(b-a))$
-Stationary, if $\lambda(t)=\lambda$,

INTERARRIVAL TIMES

$T_{n}=$ time between $(n-1)$ st arrival and n th.
$T_{n} \sim \operatorname{exponential}$ with mean $\theta=1 / \lambda$
$\mathrm{E}\left[T_{n}\right]=1 / \lambda$
$\operatorname{Var}\left[T_{n}\right]=1 / \lambda^{2}$

$$
\begin{aligned}
& \text { WAITING TIME } \\
& S_{n}=\text { Time until } n \text {th event. } \\
& S_{n}=\sum_{i=1}^{n} T_{i} \\
& S_{n} \sim \operatorname{Gamma}(\alpha=n, \theta=1 / \lambda) \\
& \mathrm{P}\left[S_{n} \leq t\right]=\mathrm{P}[N(t) \geq n] \\
& \mathrm{E}\left[S_{n}\right]=n / \lambda \\
& \operatorname{Var}\left[S_{n}\right]=n / \lambda^{2} \\
& \hline
\end{aligned}
$$

CLASSIFIED EVENTS

If arrivals are classified
\rightarrow Independent Poisson Processes
Ex. Next arrival type A w/ prob. p,
type B w/ prob. q
Type A arrivals
\sim Poisson process with rate λp
Type B arrivals
\sim Poisson process with rate λq
The two processes are independent!
P[exactly n type A before m type B]

$$
=\mathrm{P}[\text { Neg. Bin. }(\mathrm{m}, \mathrm{p})=\mathrm{n}]
$$

$$
=\binom{n+m-1}{n} p^{n} q^{m}
$$

NONHOMOGENEOUS P.P.

$\lambda(t)$ varies in time
$-\#$ events in $[\mathrm{a}, \mathrm{b}] \sim \operatorname{Poisson}\left(\int_{a}^{b} \lambda(t) d t\right)$

COMPOUND P.P.

Each Arrival carries some random value
$S=$ Total cost by time t
$S=\sum_{i=1}^{N} X_{i} ; \quad N \sim$ Poisson, $X_{i}{ }^{\prime}$ s i.i.d.
Stationary case:

$$
\begin{aligned}
& \mathrm{E}[S]=\lambda t \mathrm{E}[X], \\
& \operatorname{Var}[S]=\lambda t \mathrm{E}\left[X^{2}\right]
\end{aligned}
$$

Nonhomogeneouse case:

$$
\begin{aligned}
& \mathrm{E}[S]=\left(\int_{0}^{t} \lambda(s) d s\right) \mathrm{E}[X] \\
& \operatorname{Var}[S]=\left(\int_{0}^{t} \lambda(s) d s\right) \mathrm{E}\left[X^{2}\right]
\end{aligned}
$$

SUMS of PROCESSES

$\left(N_{1}(t), \lambda_{1}\right),\left(N_{2}(t), \lambda_{2}\right)$ independent processes $N(t)=N_{1}(t)+N_{2}(t)$ is a Poisson process

$$
\text { with rate } \lambda_{1}+\lambda_{2}
$$

Each arrival of $N_{1}(t)$ has value $X_{i} \sim F_{1}(x)$
Each arrival of $N_{2}(t)$ has value $Y_{i} \sim F_{2}(x)$ $\sum_{i=1}^{N_{1}(t)} X_{i}+\sum_{j=1}^{N_{2}(t)} Y_{j}$ is a Compound P.P. with rate $\lambda_{1}+\lambda_{2}$ and arrival distribution

$$
F(x)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} F_{1}(x)+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} F_{2}(x)
$$

