B.1.3 What is a Poisson Process?

What is a Poisson Process?
How do we do things with it?
Exercises

Sources

This lesson comes from Ross Chapter 5 section 3, and the Daniel note section 1.1.

What is a Poisson Process?

A Poisson Process with rate λ is:

- A Stochastic Process
an indexed collection of random variables, e.g. $\left\{X_{t}, t \geqslant 0\right\}$

1. Daily close of S\&P \longrightarrow NOT a Counting process
2. Points scored by a field goal kicker \longrightarrow IS a Counting process \longrightarrow NOT a Poisson Process
3. Number of insurance claims filed \longrightarrow IS a Counting process

- A Counting Process
$\{N(t)=$ events by time $t, t \geqslant 0\}$

1. $N(t) \nearrow$ and $\geqslant 0$
2. $N(t)$ is a whole number
3. $N(t+3)-N(t)=$ events counted between t and $t+3$

- $N(t+s)-N(t) \sim$ Poisson $(\lambda s) \longrightarrow$ Stationary Increments
- $N(b)-N(a)$ and $N(d)-N(c)$ are independent if $b \leqslant c$
\longrightarrow Independent Increments
Turns out: $\mathrm{P}[N(h)>1]=o(h) \longrightarrow N(t)$ increases by one at a time.

Examples

Trains arrive at a station according to a Poisson Process with rate 1 every 10 minutes. What is the probability that at least one train will arrive in the next 20 minutes?
$\mathrm{P}[N(20)-N(0) \geqslant 1]=\mathrm{P}[N(20)-0 \geqslant 1]$?
$\lambda=1 / 10 \longrightarrow N(20) \sim$ Poisson $(\lambda \cdot 20)=\operatorname{Poisson}((1 / 10) \cdot 20=2)$
From the tables: $p_{k}=e^{-\lambda} \lambda^{k} / k$!

$$
\begin{aligned}
\mathrm{P}[N(20) \geqslant 1] & =p_{1}+p_{2}+p_{3}+\cdots \\
& =1-\mathrm{P}[N(20)=0] \\
& =1-e^{-(2)}(2)^{0} / 0!=1-e^{-2} \approx 0.865
\end{aligned}
$$

What is the Variance of the number of trains in the next 20 minutes?
$N(20) \sim$ Poisson $(2) \longrightarrow \operatorname{Var}[N(20)]=2$
Variance of Poisson (λt) is λt, Expected value of Poisson (λt) is λt
As $t \nearrow, N(t) \sim N(\lambda t, \lambda t) \longrightarrow$ approximate using continuity correction.

Examples

Trains arrive at a station according to a Poisson Process with rate 1 every 10 minutes.
What is the probability that no trains arrive in the next 10 minutes and exactly 2 trains arrive between 10 and 30 minutes from now?
$\mathrm{P}[N(10)=0, N(30)-N(10)=2] ?$
$(0,10) \cap(10,30)=\varnothing \longrightarrow N(10), N(30)-N(10)$ are independent.
$N(10) \sim \operatorname{Poisson}(\lambda \cdot 10)=\operatorname{Poisson}((1 / 10) \cdot 10=1)$
$N(30)-N(10) \sim \operatorname{Poisson}(\lambda \cdot(30-10))=\operatorname{Poisson}((1 / 10) \cdot 20=2)$
$\mathrm{P}[N(10)=0, N(30)-N(10)=2]$
$=\mathrm{P}[N(10)=0] \mathrm{P}[N(30)-N(10)=2]$
$=\left(e^{-1}\right)\left(e^{-2}(2)^{2} / 2!\right)$
$=e^{-3} 2^{2} / 2 \approx 0.0996$

Exercise 1

Suppose that trains arrive at a station according to a Poisson Process with rate 1 every 10 minutes. What is the probability that exactly 2 trains arrive in the next 10 minutes or that exactly 1 train arrives between 10 and 40 minutes from now?

Exercise 1
Suppose that trains arrive at a station according to a Poisson Process with rate 1 every 10 minutes. What is the probability that exactly 2 trains arrive in the next 10 minutes or that exactly 1 train arrives between 10 and 40 minutes from now?

$$
\begin{aligned}
& P[N(10)=2 \text { or } N(40)-N(10)=1] \quad N(10), N(40)-N(10) \\
& P[A \cup B]=P[A]+P[B]-P[A \cap B] \quad \text { are Independent } \\
& N(10) \sim P_{0 i s \operatorname{sen}(1 / 10 \cdot 10=1)} \quad \begin{array}{l}
\text { tween } 10 \text { and } 40 \text { minutes from now? } \\
N(40)-N(10) \sim \operatorname{Poisson}(1 / 10 \cdot 30=3) \\
P[N(10)=2]=e^{-1} 1^{2} / 2!=e^{-1} / 2 \\
P[N(40)-N(10)=1]=e^{-3} 3^{1} / 1!=e^{-3} 3
\end{array}
\end{aligned}
$$

Exercise 2
For a tyrannosaur with 10,000 calories stored:

- The tyrannosaur uses calories uniformly at a rate of 10,000 per day. If his stored calories reach 0 , he dies.
- The tyrannosaur eats scientists (5,000 calories each) at a Poisson rate of 1 per day.
What is the probability that the Dinosaur dies at time 1 ?

Exercise 2

For a tyrannosaur with 10,000 calories stored:

- The tyrannosaur uses calories uniformly at a rate of 10,000 per day. If his stored calories reach 0 , he dies.
- The tyrannosaur eats scientists (5,000 calories each) at a Poisson rate of 1 per day.
What is the probability that the Dinosaur dies at time 1 ? day

$$
\begin{gathered}
P[N(1)=0]=e^{-1} \cong 0.368 \\
N(1) \sim p_{0 i 3}=0 \\
(1.1)
\end{gathered}
$$

