Sources

This lesson comes from Ross Chapter 4 section 3.

Classifying states, part 1

No probability of leaving \longrightarrow Gone is an absorbing state.
Can be reached in finitely many steps with positive probability
\longrightarrow Gone is accessible from Preferred or Standard.
Preferred \leftrightarrow Standard communicate. One class of states
Gone does not communicate with any state. Another class.

Gambler's Ruin

Suppose a gambler starts with $\$ 1$ tosses a coin against an opponent with $\$ 2$. If the coin lands heads, the gambler wins $\$ 1$, but if the coin lands tails, the gambler losses $\$ 1$. The game is repeated until either the gambler is broke or has all $\$ 3$.

Nothing is accessible from Broke.
Broke, Flush \longrightarrow absorbing
\$1 and \$2 communicate.
Classes: \{Broke\} \{\$1, \$2\} \{Flush\}

$$
\mathbf{P}=\begin{gathered}
B \\
B \\
1 \\
2 \\
F
\end{gathered}\left[\begin{array}{cccc}
B & 1 & 2 & F \\
1 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 \\
0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$\$ 1$ and $\$ 2$ are Transient $=$ probability of never returning >0.

Random Walk

An east/west street has 4 bars. A drunk guy "switches" bars every hour, and always moves east with probability p and west with probability $1-p$. If he chooses east from the easternmost bar, he just stays put for another hour, and similarly for the westernmost bar.

All states communicate
Classes: $\{A, B, C, D\}$
\longrightarrow Irreducible MC

$$
\mathbf{P}=\begin{gathered}
A \\
A \\
B \\
C \\
D
\end{gathered}\left[\begin{array}{cccc}
1-p & p & C & D \\
1-p & 0 & p & 0 \\
0 & 1-p & 0 & p \\
0 & 0 & 1-p & p
\end{array}\right]
$$

$p>0 \longrightarrow$ all states Recurrent $=$ probability of return is 1.

Example

For the following transition matrix of a Markov chain, draw the transition diagram and identify the classes of states. Label each state as recurrent or transient.

$\mathbf{P}=$| A |
| :---: |
| A |
| B |
| B |
| C |
| D |\(\left[\begin{array}{cccc}0.5 \& 0.5 \& 0 \& D

0.5 \& 0.5 \& 0 \& 0

0.25 \& 0.25 \& 0.25 \& 0.25

0 \& 0 \& 0 \& 1\end{array}\right]\)

Example

For the following transition matrix of a Markov chain, draw the transition diagram and identify the classes of states. Label each state as recurrent or transient.

Exercise - Bonus Malus

An automobile insurance company determines premiums for subsequent years based on the number of accidents in the current year. If an individual has 0 claims this year, the premium goes down by $\$ 100$, but it can't fall lower than the minimum premium of $\$ 75$. If the number of claims is 1 , then the premium goes up $\$ 100$, but it's can't be more than the maximum premium of $\$ 275$. If the number of claims is 2 or more the premium goes up by $\$ 200$, but again to no more than the maximum premium. If the number of claims follows a Poisson distribution with mean 1, construct the Markov chain transition matrix to model this scenario.

Exercise - Bonus Malus

An automobile insurance company determines premiums for subsequent years based on the number of accidents in the current year. If an individual has 0 claims this year, the premium goes down by $\$ 100$, but it can't fall lower than the minimum premium of $\$ 75$. If the number of claims is 1 , then the premium goes up $\$ 100$, but it's can't be more than the maximum premium of $\$ 275$. If the number of claims is 2 or more the premium goes up by $\$ 200$, but again to no more than the maximum premium. If the number of claims follows a Poisson distribution with mean 1, construct the Markov chain transition matrix to model this scenario.

