Option Pricing Basics - Outline

- 1 A.2.1 Put-Call Parity
 - Put-Call Parity Formula
 - Synthetically Creating Assets
 - Exploiting Arbitrage

Put-Call Parity

For a European call and put with the same K and T, **put-call parity** (PCP) describes the no-arbitrage relationship between the options' premiums:

$$C(S, K, T) - P(S, K, T) = F_{0,T}^{P}(S) - F_{0,T}^{P}(K)$$

E.g., if S is a non-dividend paying stock and K is cash, then

$$C(S, K, T) - P(S, K, T) = S_0 - Ke^{-rT}$$

Put-Call Parity Proof

Consider a portfolio that buys a non-dividend paying share of stock, buys a European put option on the stock and borrows $\$Ke^{-rT}$

		Payoff at T	
	CF Today	$S_T < K$	$S_T > K$
Buy stock	$\overline{-S_0}$	$\overline{S_T}$	$\overline{S_T}$
Buy put	-P	$K - S_T$	0
Borrow $\$Ke^{-rT}$	$+Ke^{-rT}$	-K	-K
	$\overline{-S_0 - P + K e^{-rT}}$	0	$\overline{S_T - K}$

Note that this portfolio has the exact same payoff as C(S, K, T)

Put-Call Parity Proof (continued)

By the law of one price, two portfolios with the exact same payoff must have the same price. Thus:

Cashflow to buy
$$call = CF$$
 to buy portfolio

$$-C = -S_0 - P + K e^{-rT}$$

$$C - P = S_0 - K e^{-rT}$$

Synthetically Creating Assets

We can use the PCP equation if we wish to synthetically create (i.e., replicate) one of the assets found in the PCP equation:

- Rearrange the equation to isolate the variable representing the CF to enter the position you wish to create
- Opposite side of equation describes CFs of transactions that will synthetically create the desired position

$$C - P = S_0 - Ke^{-rT}$$

$$-C = -P - S_0 + Ke^{-rT}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\text{long call buy put borrow}$$

$$\text{buy stock}$$

Synthetically Creating Assets: Example

Example

How would you synthetically create a long position in a European put option on a stock that pays dividends continuously at annual yield δ using shares of the stock, a European call option and borrowing or lending?

• The relevant put-call parity equation is:

$$C - P = Se^{-\delta T} - Ke^{-rT}$$

Rearranging to isolate the cashflow from purchasing a put, we get:

$$-P = Se^{-\delta T} - Ke^{-rT} - C$$

Synthetically Creating Assets: Example

Example (continued)

$$-P = Se^{-\delta T} - Ke^{-rT} - C$$

Thus, we see that we can replicate the put option with the following three transactions:

- Sell $e^{-\delta T}$ shares of stock
- Buy the call option
- Lend Ke^{-rT} dollars at the risk-free rate
 - Note that this is the same as investing Ke^{-rT} or purchasing a risk-free zero-coupon bond with a face value of K

Exploiting Arbitrage

When a no-arbitrage parity condition is violated, arbitrage is available. A useful trick to know *how* to exploit arbitrage opportunities dealing with asset prices is to do the following:

- Write down the observed inequality
- Move everything to the "greater than" side of the inequality
- The resulting symbols represent the cash flows from the transactions that exploit the arbitrage

Exploiting Arbitrage: Example

Consider a European call and put option on a non-dividend paying stock. You observe that the call option's actual premium is higher than the price implied by put-call parity. How would you exploit the arbitrage?

- You observed: $C > S_0 Ke^{-rT} + P$
- ② Moving everything to the "greater than" side gives:

$$C - S_0 + Ke^{-rT} - P > 0$$

- 3 You can exploit the arbitrage by doing the following:
 - Sell the call
 - Buy the stock
 - Buy the put
 - Borrow Ke^{-rT}