FPT Method

FPT = Modified NLP Method with a formulaic expense allowance

$$_{t}V_{x}^{FPT} = _{t}V_{x}^{NLP} - _{t}VE_{x} = PVFB_{t} - \underbrace{(PVPB_{t} + PVPE_{t})}_{PVNP_{t}}$$

$$_{t}VE_{x} = PVPE_{t} = PE_{0} \times \ddot{a}_{x+t}$$

$$PE_{0} = \frac{EA_{x}}{\ddot{a}_{x}}$$

$$EA_{x} = NP_{1} - c_{x} = \left(\frac{PVFB_{1}}{\ddot{a}_{x+1}}\right) - c_{x}$$

 $\mathbf{EA} \neq \mathbf{actual} \ \mathbf{expenses}$ ${}_{0}V_{x}^{FPT} = {}_{1}V_{x}^{FPT} = 0$ ${}_{t}V_{x}^{FPT} \leq {}_{t}V_{x}^{NLP}$

 $c_x = v \cdot q_x \cdot \text{DB} = \text{first-year cost of insurance}$

$$NP_t = \begin{cases} c_x & \text{for } t = 0 \quad (\alpha) \\ PB_t + PE_t = \frac{\text{PVFB}_1}{\ddot{a}_{x+1}} \cdot r_t^{GP} & \text{for } t \ge 1 \quad (\beta) \end{cases}$$

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Common Statutory Reserve Methodologies

5 / 27

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Common Statutory Reserve Methodologies

Examples With Level Gross Premiums

Example Contract

Task 1: Determine NLP Reserve

Task 2: Determine FPT Reserve

Example With Non-Level Gross Premiums

Commissioners Reserve Valuation Method (CRVM)

Example Contract (5-Year Term)

Assumptions:

•	Issue	age	=	55
----------	-------	-----	---	----

t	$\boldsymbol{\chi}$	<i>q</i> _{55+t}
0	55	0.0053
1	56	0.0064
2	57	0.0077
3	58	0.0090
4	59	0.0101

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Examples With Level Gross Premiums

7 / 27

Task 1: Determine NLP Reserve

Determine the NLP reserve for all policy years the contract is in force.

Task 1 Solution

For all years:

$$_{t}V_{55}^{NLP} = \text{PVFB}_{t} - NP_{0} \cdot \ddot{a}_{55+t:\overline{5-t}}$$

 $\text{PVFB}_{t} = 100,000A_{55+t:\overline{5-t}}$

Since the GP is level, $NP_t = NP_0$:

$$NP_0 = \left(\frac{\text{PVFB}_0}{\ddot{a}_{55:\overline{5}|}}\right)$$
$$= \frac{3234.86}{4.4905}$$
$$= 720.37$$

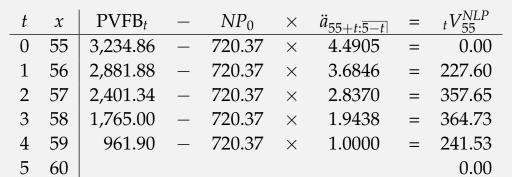
t	$\boldsymbol{\chi}$	q_{55+t}	$_tp_{55}$	$PVFB_t$	$\ddot{a}_{55+t:\overline{5-t}}$
0	55	0.0053	1.0000	3,234.86	4.4905
1	56	0.0064	0.9947	2,881.88	3.6846
2	57	0.0077	0.9883	2,401.34	2.8370
3	58	0.0090	0.9807	1,765.00	1.9438
4	59	0.0101	0.9719	961.90	1.0000

Year 3 sample calculations (other ways possible too!):

$$PVFB_{3} = 100,000 \left[\frac{\frac{0.0090(0.9807)}{1.05} + \frac{0.0101(0.9719)}{1.05^{2}}}{0.9807} \right]$$

$$= 1,765$$

$$\ddot{a}_{58:\overline{2}|} = \frac{0.9807 + \frac{0.9719}{1.05}}{0.9807} = 1.94$$


Rounding differences within a few cents are likely and not important.

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Examples With Level Gross Premiums

9 / 27

Task 1 Solution Summary

Retrospective approach:

$${}_{1}V_{55}^{NLP} = \frac{(0+720.37)(1.05) - 0.0053(100,000)}{1-0.0053} = 227.60$$

$${}_{2}V_{55}^{NLP} = \frac{(227.60+720.37)(1.05) - 0.0064(100,000)}{1-0.0064} = 357.65$$
 etc.

Task 2: Determine FPT Reserve

Determine the FPT reserve for the same contract.

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Examples With Level Gross Premiums

11 / 27

Task 2 Solution – Getting the Net Premiums

For all years:

$$_{t}V_{55}^{FPT} = _{t}V_{55}^{NLP} - _{t}VE_{55} = _{t}V_{55}^{NLP} - PE_{0}\ddot{a}_{55+t}$$

 $_{t}VE_{x}=PV$ of PEs, which we need the EA to determine:

$$EA_{55} = \left(\frac{\text{PVFB}_1}{\ddot{a}_{56:\overline{4}|}}\right) - c_{55}$$

$$= \frac{2881.88}{3.6846} - \frac{0.0053(100,000)}{1.05}$$

$$= 782.14 - 504.76 = 277.38$$

$$PE_0 = \frac{EA_{55}}{\ddot{a}_{55:\overline{5}|}} = \frac{277.38}{4.4905} = 61.77$$

$$NP_1 = PB_0 + PE_0 = 720.37 + 61.77 = 782.14 = PB_0 \text{ for age } 5\underline{6}$$

60

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Examples With Level Gross Premiums

Task 2 Solution: Unamortized EA

The unamortized EA is essentially a reserve for (formulaic) costs recognized at issue

t	\boldsymbol{x}	EA_{55}	_	PE_0	×	$\ddot{a}_{55+t:\overline{5-t}}$	=	$_{t}VE_{55}$
0	55	277.38	_	61.77	×	4.4905	=	0.00
1	56	0.00	_	61.77	×	3.6846	=	-227.60
2	57	0.00	_	61.77	×	2.8370	=	-175.24
3	58	0.00	_	61.77	×	1.9438	=	-120.07
4	59	0.00	_	61.77	×	1.0000	=	-61.77
5	60						=	0.00

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Examples With Level Gross Premiums

Same as NLP

13 / 27

Task 2 Solution: Relationship Between NLP and FPT Reserve

							Barrie as IVEI					
		NII D				r D T				→ —		_
t	$\boldsymbol{\mathcal{X}}$	$_{t}V_{55}^{NLP}$	_	$_{t}VE_{55}$	=	$_{t}V_{55}^{FPT}$	=	$PVFB_t$	_	$(PB_0 + PE_0)$	×	$\ddot{a}_{55+t:\overline{5-t}}$
0	55	0.00	_	0.00	=	0.00						_
1	56	227.60	_	227.60	=	0.00	=	2,881.88	_	(720.37 + 61.77)	×	3.6846
2	57	357.65	_	175.24	=	182.41	=	2,401.34	_	(720.37 + 61.77)	×	2.8370
3	58	364.73	_	120.07	=	244.67	=	1,765.00	_	(720.37 + 61.77)	×	1.9438
4	59	241.53	_	61.77	=	179.76	=	961.90	_	(720.37 + 61.77)	×	1.0000
5	60	0.00			=	0.00						

In the first policy year, the FPT $NP_0 = \alpha = c_x$

$${}_{0}V_{55}^{FPT} = PVFB_{0} - PVNP_{0}$$

$$= PVFB_{0} - (c_{55} + v_{1}p_{55}PVNP_{1})$$

$$= 3234.86 - \left(504.76 + \frac{0.9947}{1.05}(782.14 \times 3.6846)\right)$$

$$= 0$$

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Examples With Level Gross Premiums

Task 2 Solution: Retrospective View

$${}_{0}V_{55}^{FPT} = 0$$

$${}_{1}V_{55}^{FPT} = \frac{(0+c_{55})(1.05) - 100,000(q_{55})}{1-q_{55}}$$

$$= \frac{(0+100,000vq_{55})(1.05) - 100,000(q_{55})}{1-q_{55}}$$

$$= 0$$

$${}_{2}V_{55}^{FPT} = \frac{(0+782.14)(1.05) - 100,000(0.0064)}{1-0.0064}$$

$$= 182.41$$
etc.

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Examples With Level Gross Premiums

15 / 27

VLIL Ch. 5, Lesson 1: Common Reserve Methodologies

Common Statutory Reserve Methodologies

Examples With Level Gross Premiums

Example With Non-Level Gross Premiums

Task 3: Determine FPT Reserve Assuming Non-Level Premiums

Commissioners Reserve Valuation Method (CRVM)

Remainder of handout included in online seminar