LFV-133: Cluster Analysis – A Spatial Approach

LFV-133: Cluster Analysis: A Spatial Approach to Actuarial Modeling

Freedman and Reynolds (August 2008)

Video By: J. Eddie Smith, IV, FSA, MAAA

LFV-133: Cluster Analysis – A Spatial Approach

1 / 14

Key Exam Topics in This Lesson

Classic Modeling

The Problem: Nested Stochastic Modeling Classic Approaches to Reducing Runtime Modified Seriatim

Cluster Modeling

User Steps Process Steps Advantages Over Classic Modeling Potential Applications Specific Products Validation

The Problem: Nested Stochastic Modeling

Classic Approaches to Reducing Runtime

- 1. Give us **FASTER** computers!
- 2. Now give us **MORE** computers!
- 3. Let's run fewer scenarios
 Or fewer paths
 Or fewer shocks
- 4. Let's do less frequent re-balancing

Or let's model fewer cells...

Classic Modeling: Modified Seriatim

Seriatim \Rightarrow no "modeling" done \Rightarrow include <u>all</u> policies as-is

Modified seriatim methods attempt to reduce the volume of data modeled

- 1. Combine policies with same issue month, plan, premium mode, etc.
- 10:1

- 2. Use quinquennial or decennial issue ages
- 3. Combine risk classes or map minor plans into major plans

Commonly done, but has **drawbacks**:

- 3.1 Must know something about minor plans
- 3.2 Mapping rules are subjective, hard to automate
- 3.3 Must update rules for new plans and as in-force changes
- 3.4 Projected values may not be valid
- 3.5 Hard to apply rules for multiple life policies and investment guarantees

LFV-133: Cluster Analysis - A Spatial Approach

Classic Modeling

5 / 14

LFV-133: Cluster Analysis – A Spatial Approach

Classic Modeling

Cluster Modeling

User Steps

Process Steps

Advantages Over Classic Modeling

Potential Applications

Specific Products

Validation

Cluster Modeling: User Steps

1. Define location variables and their weights

- ▶ Reserves, CSV, premium, PV guaranteed benefits, PV profit, ∑ Premiums
- ► Higher weight ⇒ higher priority
- 2. **Define a size variable** (face, AV)
 - Smaller policies get mapped first
- 3. **Define segments** that should <u>not</u> be mapped across
 - ▶ Business that should not be mixed: plan code, issue year or GAAP era, etc.
 - ► Reduces runtime
 - ► Runtime for 10 equal segments = $\frac{1}{10}$ × runtime for whole group
 - Other reasons: reporting, reconciliation, LVs don't sufficiently distinguish policies
- 4. Specify a target number of clusters

LFV-133: Cluster Analysis - A Spatial Approach

Cluster Modeling

7 / 14

Cluster Modeling: Process Steps

- 1. Calculate distance between any 2 policies
 - n-dimensional sum-of-squares approach

3 LV case:
$$\sqrt{(LV1_1 - LV1_2)^2 + (LV2_1 - LV2_2)^2 + (LV3_1 - LV3_2)^2}$$

- Normalize LVs by dividing by their size-weighted standard deviation
- 2. Determine importance of each policy
 - ► Importance = policy size × distance from the nearest policy
 - ► Higher importance \Rightarrow <u>less</u> likely to be mapped
- 3. Create clusters
 - Map policy with lowest importance to its nearest neighbor
 - Process continues until cluster target is met
- 4. Determine representative policy for each cluster
 - ► A single policy that is closest to cluster's average location
 - Gross up to reflect size of cluster

Visualizing Euclidean Distance in 2 Dimensions

LFV-133: Cluster Analysis – A Spatial Approach

Cluster Modeling

9 / 14

Cluster Model Advantages Over Classic

- 1. Applies to liabilities or even assets
- 2. Far better compression ratios for a given model-to-actual fit
- 3. Easily automated \Rightarrow less manual effort
- 4. Can be maintained and applied at later valuation dates
- 5. Priority measures of model fit measures can be customized
- 6. Applies to seriatim in-force or to modeled in-force
- 7. Model points are easily adjusted to change for desired granularity
- 8. Allows on-the-fly analysis of model fit without rerunning a model

Potential Applications of Cluster Modeling

1. Medium-sized models

- ► Replacement for classic models: nearly reproduces seriatim results
- Uses a large number of segments or cells per segment
- ▶ Uses typical LVs: issue age, issue year, in-the-moneyness, etc.

2. Small models

- Can also reproduce seriatim results but with less accuracy
- Good for estimating CTEs
- May not be accurate enough for tail analysis

3. Very small models

- Not appropriate for tail analysis
- ► May be used to process many scenarios to select a smaller set for another model
- Could be used to quantify sensitivities to key assumptions

As model size falls, use more care in validating!

LFV-133: Cluster Analysis - A Spatial Approach

Cluster Modeling

11 / 14

Cluster Modeling Applied to Traditional and Term Life

Traditional Life/Health Model

- ▶ LVs: reserve, FY premiums, FY claims, PV profits
- ► Segments: None
- ► Compression: 120,000 cells to 200 cells (60:1)
- Higher-weighted LVs nearly identical
- ► Close match (95–96%) on lower weighted LVs

Term Life Model

- ▶ LVs: reserves, PV various cash flow buckets, ∑ Premiums for various buckets
- Segments: Issue year-based, and LT period
- ► Compression: 1.1MM policies to 10,000 cells and 300 cells (110:1 and 3667:1)
- ► Results: both cluster models fit very well

Cluster Modeling Applied to a VA Block

"A VA model is only useful if it performs well under a variety of scenarios"

VAs are difficult to compress using traditional mapping

- Similar policies have different in-the-moneyness
- ► Policyholder behavior drives investment allocation ⇒ future returns

Authors tested 2 cluster models against a 9000-cell classic model

- 1. 250-cell model
 - ► Fit very well
 - Could be used for tail analysis
- 2. 50-cell model
 - Also fit well, but had more deviations
 - Not appropriate for tail analysis

LVs: AV, PV DBs and other benefits, PV profits (highest weight)

LFV-133: Cluster Analysis – A Spatial Approach

Cluster Modeling

13 / 14

Validating a Small(er) Model

1. Run a large model to obtain results for comparison

- 2. Do a static validation
 - Compare starting balance sheet values
 - Adjust weights as needed, make tradeoffs
- 3. Do a dynamic validation
 - Compare projected income statement values
 - Compare all components if replacing the large model
- 4. Run small model over a small scenario set
 - Select scenarios of importance
 - May only be needed initially and occasionally in the future