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1. A discrete distribution N has probability generating function

PN (z) = (0.3 + 0.2z + 0.5z2)5

Find P[N = 2].

A. 0.023 B. 0.031 C. 0.046 D. 0.055 E. 0.062

P[N = 2] =
P ′′(0)

2

P ′(z) = 5
(
0.3 + 0.2z + 0.5z2

)4 · (0.2 + z)

P ′′(z) = 20
(
0.3 + 0.2z + 0.5z2

)3 · (0.2 + z)2 + 5
(
0.3 + 0.2z + 0.5z2

)4

P ′′(0) = 20 · 0.33 · 0.22 + 5 · 0.34 = 0.0621

P[N = 2] =
0.0621

2
= 0.031

2. A discrete distribution N has probability generating function

PN (z) = (0.3 + 0.2z + 0.5z2)5

Find Var[N ].

A. 1.9 B. 3.8 C. 7.6 D. 33.8 E. 39.8

See previous problem for P ′(z) and P ′′(z).

E[N ] = P ′(1) = 5 · 14 · 1.2 = 6

E[N(N − 1)] = P ′′(1) = 20 · 13 · 1.22 + 5 · 14 = 33.8

E[N2]− E[N ] = E[N2]− 6 = 33.8⇒ E[N2] = 39.8

Var[N ] = 39.8− 62 = 3.8

3. An actuary models the number of losses using a distribution with probability generating function

P (z) = 1− (1− z)1/4, z < 1

According to the model, what is the probability of having exactly 3 losses?

A.
3

64
B.

7

128
C.

3

16
D.

7

32
E.

21

64

P[N = 3] =
P ′′′(0)

3!
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P ′(z) =
1

4
(1− z)−3/4

P ′′(z) =
1

4
· 3
4
· (1− z)−7/4

P ′′′(z) =
1

4
· 3
4
· 7
4
· (1− z)−11/4

P ′′′(0) =
1

4
· 3
4
· 7
4
=

21

64

P[N = 3] =
21

64
· 1
6
=

7

128

4. [3.F06.25] You are given the following information about the probability generating function for a discrete
distribution:

P ′(1) = 2 P ′′(1) = 6

Calculate the variance of the distribution.

A. Less than 1.5
B. At least 1.5, but less than 2.5
C. At least 2.5, but less than 3.5
D. At least 3.5, but less than 4.5
E. At least 4.5

P ′(1) = 2 = E[X], and P ′′(1) = E[X(X − 1)] = 6. Expanding the second equation gives us E[X2 −X] =
E[X2]− E[X] = E[X2]− 2 = 6, so E[X2] = 8 and Var(X) = 8− 22 = 4

5. The moment generating function of X is MX(t) = e2t2−5t. Find Var[X].

A. 1 B. 2 C. 3 D. 4 E. 5

M ′(t) = (4t− 5)e2t2−5t so EX = M ′(0) = −5e0 = −5.
M ′′(t) = 4e2t2−5t + (4t− 5)2e2t2−5t so E[X2] = 4e0 + (−5)2e0 = 4 + 52.
This gives Var(X) = (4 + 52)− (−5)2 = 4

Remark: MX(t) is the MGF of a normal random variable with mean -5 and variance 2 · 2 = 4, but you
don’t need to know that for the exam.
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6. You are given that the probability generating function of a random variable X is

PX(z) =
1

4− 3z

Find the second raw moment of X.

A. 3 B. 9 C. 12 D. 18 E. 21

P ′(z) = 3(4− 3z)−2 so E[X] = P ′(1) = 3.
P ′′(z) = 18(4− 3z)−3 so E[X(X − 1)] = P ′′(1) = 18.
Expanding, we get E[X(X − 1)] = E[X2]− E[X] so 18 = E[X2]− 3 and E[X2] = 21

7. An actuary models the number of losses using a Sibuya distribution with probability generating function

P (z) = 1− (1− z)1/3, z < 1

According to the model, what is the probability of having 2 losses?

A. 1/18 B. 1/9 C. 1/6 D. 2/9 E. 1/3

Since we are talking about the number of losses, our random variable N is discrete. That means that

PN (z) = E
[
zN

]
= 1 · P[N = 0] + z · P[N = 1] + z2 · P[N = 2] + . . .

In particular, P ′′(0) = 2P[N = 2], which here means that

P (z) = 1− (1− z)1/3

P ′(z) =
1

3
(1− z)−2/3

P ′′(z) =
1

3
· 2
3
(1− z)−5/3

P ′′(0) =
2

9

P[N = 2] =
1

2
P ′′(0) =

1

2
· 2
9
=

1

9

Or, using Newton’s generalization of the binomial theorem

(a+ b)x = ax +
x

1
ax−1 · b+ x(x− 1)

2!
ax−2 · b2 + . . .

we can expand P (z) to obtain

P (z) = 1− (1− z)1/3

= 1−
[
11/3 +

1/3

1
11/3−1 · (−z) + (1/3)(−2/3)

2
11/3−2 · (−z)2 + . . .

]
=

z

3
+

z2

9
+ . . .
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so P[N = 2] =
1

9
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