B.0.1 One-Dimensional Derivatives

Definition of Derivative
Basic Formulas
Chain Rule
Product Rule
Absolute Values
Sines and Cosines
Further Examples
B.0.2 1-Dimensional integrals
B.0.3 Integration By Parts

Definition of Derivative (Background Only)

The average rate of change from x to $x+h$ is

$$
=\frac{\text { total change }}{\text { length of interval }}
$$

$$
f(x+h)
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\frac{f(x+d x)-f(x)}{d x}=\frac{d f}{d x}
\end{aligned}
$$

The definition is typically cumbersome to use.
For example,

$$
\begin{aligned}
\frac{d}{d x} x^{2} & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x
\end{aligned}
$$

Instead of always doing this, in practice people use a smaller number of key formulas.

Basic Formulas

$$
\begin{aligned}
\frac{d}{d x} f(x) & =f^{\prime}(x) \\
\frac{d}{d x} a & =0 \text { for any constant } a \\
\frac{d}{d x} x^{n} & =n x^{n-1} \\
\frac{d}{d x}[\ln (x)] & =\frac{1}{x} \\
\frac{d}{d x} e^{x} & =e^{x} \\
\frac{d}{d x}[f(x)+g(x)] & =f^{\prime}(x)+g^{\prime}(x) \\
\frac{d}{d x}[c f(x)] & =c \frac{d}{d x} f(x)=c f^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x} x^{3} & =3 x^{2} \\
\frac{d}{d y} 3 y^{2} & =3 \cdot 2 y^{1}=6 y \\
\frac{d}{d t}\left(5 e^{t}+3 t^{4}\right) & =5 e^{t}+3 \cdot 4 t^{3} \\
\frac{d}{d s} \frac{2}{s^{3}} & =\frac{d}{d s} 2 s^{-3} \\
& =-6 s^{-4} \\
& =\frac{-6}{s^{4}}
\end{aligned}
$$

Chain Rule

Theorem (Chain Rule)
If f and u are differentiable functions,

$$
\frac{d}{d x}[f(u)]=f^{\prime}(u) \cdot \frac{d u}{d x}
$$

Examples

$$
\begin{aligned}
\frac{d}{d x} u^{n} & =n u^{n-1} \frac{d u}{d x} \\
\frac{d}{d x} e^{u} & =e^{u} \cdot \frac{d u}{d x}
\end{aligned}
$$

Suppose we want to find $\frac{d}{d t} \exp \left[-2 t+t^{2}\right]$. Let $u=-2 t+t^{2}$.

$$
\begin{aligned}
\frac{d}{d t} \exp \left[-2 t+t^{2}\right] & =\frac{d}{d t} \exp [u] \\
& =\exp [u] \cdot \frac{d u}{d x} \\
& =\exp \left[-2 t+t^{2}\right] \cdot(-2+2 t) \\
\frac{d}{d x}\left(2 x^{2}+5 x+3\right)^{5} & =5\left(2 x^{2}+5 x+3\right)^{4} \cdot(4 x+5) \\
\frac{d}{d t} \exp \left[5 e^{t}-5+3 t\right] & =\left(\exp \left[5 e^{t}-5+3 t\right]\right) \cdot\left(5 e^{t}+3\right)
\end{aligned}
$$

Chain Rule: Examples

Suppose we want to find $\frac{d}{d x} 2^{x}$. We know how to find $\frac{d}{d x} e^{x}$, so let's rewrite 2^{x} in terms of e^{x}.

$$
\begin{gathered}
2=e^{\ln (2)}, 2^{x}=\left(e^{\ln (2)}\right)^{x}=e^{x \ln (2)} \\
\frac{d}{d x} 2^{x}=\frac{d}{d x} e^{x \ln (2)}=\ln (2) \cdot e^{x \ln (2)}=(\ln 2) \cdot 2^{x}
\end{gathered}
$$

More generally, for any a,

$$
\begin{aligned}
\frac{d}{d x} a^{x}= & (\ln a) \cdot a^{x} \\
\frac{d}{d x} 2^{x^{3}-3 x} & =\frac{d}{d x} 2^{u} \quad u=x^{3}-3 x \\
& =2^{u} \cdot \ln (2) \cdot \frac{d u}{d x} \\
& =2^{\left(x^{3}-3 x\right)} \cdot \ln (2) \cdot\left[3 x^{2}-3\right]
\end{aligned}
$$

Product Rule

What about the derivatives of products or quotients of two functions?

$$
\begin{aligned}
& \begin{array}{c|c|c|}
\hline u \cdot d v & \\
\hline & \text { tiny } \\
\cline { 2 - 3 } & & \\
\hline u v & d u \cdot v \\
& d u
\end{array} \\
& \frac{d}{d x}[u \cdot v]=u \cdot \frac{d v}{d x}+\frac{d u}{d x} \cdot v \\
& (u v)^{\prime}=u \cdot v^{\prime}+u^{\prime} \cdot v \\
& \text { Quotients can be done by } \\
& \text { rewriting them as products } \\
& \frac{d}{d x}\left[u \cdot \frac{1}{v}\right]=u \cdot \frac{d}{d x} \frac{1}{v}+u^{\prime} \cdot \frac{1}{v} \\
& =\frac{-u v^{\prime}}{v^{2}}+\frac{u^{\prime}}{v} \\
& =\frac{-u v^{\prime}+u^{\prime} v}{v^{2}}
\end{aligned}
$$

Product Rule Examples

$$
\begin{aligned}
\frac{d}{d x}\left[x^{2} e^{3 x}\right]= & x^{2} \cdot 3 e^{3 x}+2 x \cdot e^{3 x} \\
\frac{d}{d x} \frac{e^{-x}}{x^{3}}= & \frac{d}{d x}\left[e^{-x} \cdot x^{-3}\right] \\
= & e^{-x} \cdot \frac{-3}{x^{4}}+\left(-e^{-x}\right) \cdot \frac{1}{x^{3}} \\
\frac{d}{d x}\left[\left(x^{2}+3 x+5\right)^{3} \cdot e^{4 x}\right]= & \left(x^{2}+3 x+5\right)^{3} \cdot \frac{d}{d x} e^{4 x} \\
& +\frac{d}{d x}\left[\left(x^{2}+3 x+5\right)^{3}\right] \cdot e^{4 x} \\
= & \left(x^{2}+3 x+5\right)^{3} \cdot 4 e^{4 x} \\
& +3 \cdot\left(x^{2}+3 x+5\right)^{2} \cdot(2 x+3) \cdot e^{4 x}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\qquad|x|=x \quad \text { if } x \geq 0 \\
\quad|x|=-x \\
\text { if } x<0
\end{array}\right\} \begin{aligned}
& \frac{d}{d x}|x|= \begin{cases}1 & x>0 \\
-1 & x<0\end{cases} \\
& \text { Note that } \frac{d|x|}{d x} \text { is } \\
& \text { undefined if } x=0 .
\end{aligned}
$$

Sines and Cosines

$$
\begin{aligned}
\frac{d}{d x} \frac{2 x+5}{x^{2}-3 x+4} & =(2 x+5) \frac{(-1)(2 x-3)}{\left(x^{2}-3 x+4\right)^{2}}+\frac{2}{x^{2}-3 x+4} \\
\frac{d}{d x}(x+2) e^{x^{2}-5 x} & =(x+2)(2 x-5) e^{x^{2}-5 x}+1 \cdot e^{x^{2}-5 x} \\
\frac{d}{d x} x^{2} e^{-3 x^{2}} & =x^{2}(-6 x) e^{-3 x^{2}}+2 x \cdot e^{-3 x^{2}}
\end{aligned}
$$

Further Examples

$$
\begin{aligned}
\frac{d}{d x} \sin |x+2| & =\frac{d}{d x} \sin (x+2) & & \text { if } x+2>0 \\
& =\cos (x+2) & & x>-2 \\
\frac{d}{d x} \sin |x+2| & =\frac{d}{d x} \sin (-x-2) & & \text { if } x+2<0 \\
& =-\cos (-x-2) & & x<-2
\end{aligned}
$$

Key point: We get two cases based on whether or not what is inside the absolute value is positive. If $x+2>0$ then what is inside the absolute value is positive, so $|x+2|=x+2$, while if $x+2<0$ then what is inside the absolute value is negative so $|x+2|=-x-2$.

B.0.1 One-Dimensional Derivatives

B.0.2 1-Dimensional integrals
What is an Integral?
The Fundamental Theorem of Calculus
Common Formulas
Substitution
Other Formulas

B.0.3 Integration By Parts

Definition of an Integral

$\int_{a}^{b} f(x) d x=$ area under curve
In some sense, $f(x) d x$ is the area of an infinitely thin rectangle and the integral says that the area under the curve is the sum of the areas of infinitely many of these thin rectangles.

Geometric Examples

Often we can use geometry to find the integral/area under the curve.

$$
\int_{0}^{a} 2 d x=2 a
$$

$\int_{0}^{a} x d x=\frac{a^{2}}{2}$

Geometric Examples

In that example,

1. The integral of a constant was a linear function.
2. The integral of a line was a quadratic function.

So in these two examples, when we integrated the power of a polynomial increased by 1 .

When we differentiate,

1. The derivative of a linear function is a constant.
2. The derivative of a quadratic function is linear.

More generally, when we differentiate the power of a polynomial decreases by 1 . That is the opposite of when we integrate.

Hmmm.......isn't that an interesting coincidence?

$$
\begin{aligned}
\frac{d}{d x} F(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t & =\lim _{h \rightarrow 0} \frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x) \cdot h}{h}=f(x)
\end{aligned}
$$

The Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus)

$$
\frac{d}{d x} \int_{a}^{x} f(t) d x=f(x)
$$

Generalization: If v and u are functions,

$$
\frac{d}{d x} \int_{a}^{v} f(t) d t=f(v) \frac{d v}{d x} \frac{d}{d x} \int_{u}^{v} f(t) d t=f(v) \frac{d v}{d x}-f(u) \frac{d u}{d x}
$$

In words, the Fundamental Theorem of Calculus says that derivatives and integrals are inverse operations.

Evaluating Integrals
The Fundamental Theorem of Calculus says that derivatives and integrals are inverse operations. To find the integral of $f(x)$, we need to find a function whose derivative is $f(x)$.

Examples

$$
\begin{aligned}
\int_{0}^{5} x d x & =\left.\frac{1}{2} x^{2}\right|_{0} ^{5}=\frac{5^{2}}{2}-\frac{0^{2}}{2}=\frac{25}{2} \\
\int_{a}^{b} x^{n} d x & =\left.\frac{1}{n+1} \cdot x^{n+1}\right|_{a} ^{b} \\
& =\frac{b^{n+1}}{n+1}-\frac{a^{n+1}}{n+1}
\end{aligned}
$$

Common Formulas

$$
\begin{aligned}
\int a d x & =a x+C \\
\int x d x & =\frac{x^{2}}{2}+C \\
\int x^{n} d x & =\frac{x^{n+1}}{n+1}+C \quad \text { for } n \neq-1 \\
\int e^{b x} d x & =\frac{1}{b} e^{b x}+C \\
\int a^{x} d x & =\int e^{x \ln a} d x \\
& =\frac{1}{\ln a} a^{x}+C
\end{aligned}
$$

$$
\begin{aligned}
\int_{-2}^{5} 3 x^{4} d x & =\left.3 \cdot \frac{x^{5}}{5}\right|_{-2} ^{5} \\
& =3 \cdot \frac{5^{5}}{5}-3 \cdot \frac{(-2)^{5}}{5} \\
\int_{2}^{\infty} \frac{3}{x^{4}} d x & =\left.\frac{3}{x^{3}} \cdot \frac{1}{-3}\right|_{2} ^{\infty} \\
& =\frac{-1}{\infty^{3}}-\frac{-1}{2^{3}} \\
& =0+\frac{1}{8}=\frac{1}{8}
\end{aligned}
$$

Substitution

When we differentiate, we often have nested functions and need to use the chain rule. For example,

$$
\begin{aligned}
\frac{d}{d x} e^{x^{2}} & =e^{x^{2}} \cdot 2 x \\
\frac{d}{d x}\left(x^{2}+3\right)^{5} & =5\left(x^{2}+3\right)^{4} \cdot 2 x
\end{aligned}
$$

In both those examples, the $2 x$ factor comes from the chain rule. Often when we are doing integration, we will have a term that we need to somehow recognize as a chain rule factor. If we can do that, we can do a substitution to do the chain rule "backwards."

Substitution

Suppose we want to integrate $2 x \cdot e^{\left(x^{2}\right)}$. Let $u=x^{2}$. Then $\frac{d u}{d x}=2 x$ so $d u=2 x d x$ and we get

$$
\begin{aligned}
\int_{x=a}^{x=b} 2 x e^{\left(x^{2}\right)} d x & =\int_{u=a^{2}}^{u=b^{2}} e^{u} d u \\
& =\left.e^{u}\right|_{u=a^{2}} ^{u=b^{2}}=\left.e^{\left(x^{2}\right)}\right|_{x=a} ^{x=b} \\
& =e^{b^{2}}-e^{a^{2}}
\end{aligned}
$$

Note the limits! Either we convert back to x at the end, or we change the limits to be in terms of u.

Substitution Examples

$$
\begin{aligned}
& \int_{2}^{\infty} x e^{-2 x^{2}} d x \quad \begin{array}{l}
u=2 x^{2} \quad d u=4 x d x \\
x=2 \quad u=2 \cdot 2^{2}=8 \\
x=\infty \quad u=2 \cdot \infty^{2}=\infty
\end{array} \\
& =\int_{8}^{\infty} e^{-u} \cdot \frac{d u}{4} \\
& =\left.\frac{1}{4} \cdot(-1) \cdot e^{-u}\right|_{8} ^{\infty}=0-\frac{-1}{4} e^{-8} \\
& =\frac{1}{4} e^{-8}
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{d x}{x} & =\ln x+C \\
\int c f(x) d x & =c \int f(x) d x \\
\int[f(x)+g(x)] d x & =\int f(x) d x+\int g(x) d x \\
\int \cos x d x & =\sin x+C \quad \text { because } \frac{d}{d x} \sin x=\cos x \\
\int \sin x d x & =-\cos x+C \quad \text { because } \frac{d}{d x} \cos x=-\sin x
\end{aligned}
$$

Examples

$$
\begin{gathered}
u=x+5 \quad x=2, u=2+5=7 \\
d u=d x \quad x=5, u=5+5=10 \\
\int_{2}^{5} \frac{3 x}{(x+5)^{2}} d x=\int_{7}^{10} \frac{3(u-5)}{u^{2}} d u \\
=\int_{7}^{10} \frac{3}{u}-\frac{15}{u^{2}} d u \\
=\left.\left(3 \ln u+\frac{15}{u}\right)\right|_{7} ^{10} \\
\\
=\left(3 \ln 10+\frac{15}{10}\right)-\left(3 \ln 7+\frac{15}{7}\right)
\end{gathered}
$$

$$
\begin{aligned}
\int_{0}^{\pi}(1+\cos t) d t & =t+\left.\sin t\right|_{0} ^{\pi} \\
& =(\pi+0)-(0+0)=\pi \\
\int_{-2}^{5}|x| d x & =\int_{-2}^{0}-x d x+\int_{0}^{5} x d x \\
& =\left.\frac{-x^{2}}{2}\right|_{-2} ^{0}+\left.\frac{x^{2}}{2}\right|_{0} ^{5}=\frac{(-2)^{2}}{2}+\frac{25}{2}=\frac{29}{2} \\
\frac{d}{d x} \int_{-2 x}^{x^{3}} e^{5 t-5} d t & =e^{5 x^{3}-5} \cdot 3 x^{2}-e^{5(-2 x)-5}(-2)
\end{aligned}
$$

B. 0 One Dimensional Calculus - Outline

B.0.1 One-Dimensional Derivatives

B.0.2 1-Dimensional integrals

B.0.3 Integration By Parts
Integration By Parts
Tabular integration
The Gamma trick

Integration by parts is doing the product rule backwards.

$$
\begin{aligned}
\frac{d}{d x} u v & =u \cdot \frac{d v}{d x}+\frac{d u}{d x} \cdot v \\
\int d(u v)=u v & =\int u d v+\int v d u \\
\int u \cdot d v & =u v-\int v d u
\end{aligned}
$$

Integration By Parts

Example

$$
\begin{gathered}
\int x e^{x} d x=\int u d v \\
u=x \quad d v=e^{x} d x \\
d u=d x \quad v=e^{x}
\end{gathered}
$$

SO

$$
\begin{aligned}
\int x e^{x} d x & =u v-\int v d u \\
& =x e^{x}-\int e^{x} d x \\
& =x e^{x}-e^{x}+C
\end{aligned}
$$

You can use integration by parts to handle functions whose derivatives are easier to find than their integrals.

$$
\begin{aligned}
& \int \ln x d x=\int u d v \\
& \begin{array}{rl}
u=\ln x & d v=d x \\
d u=\frac{d x}{x} \quad & v=x \\
\text { so }
\end{array} \\
& \begin{aligned}
\int \ln x d x & =u v-\int v d u \\
& =(\ln x) x-\int x \frac{d x}{x} \\
& =x \ln x-x+C
\end{aligned}
\end{aligned}
$$

Logarithms

$$
\begin{gathered}
\int x \ln x d x=\int u d v \\
u=\ln x \quad d v=x d x \\
d u=\frac{d x}{x} \quad v=\frac{x^{2}}{2} \\
\text { so }
\end{gathered}
$$

$$
\begin{aligned}
\int x \ln x d x & =u v-\int v d u \\
& =\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2 x} d x \\
& =\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+C
\end{aligned}
$$

How do we choose u and $d v$? We need $d v$ to be something that is easy to integrate and we need u to be something that is easy to differentiate.
Ideally we also want u to become simpler when you differentiate.

Easy to Differentiate		Easy to Integrate
Logs	Polynomials	Exponentials

Integration by parts

Iterated Parts

$$
\begin{aligned}
\int x^{2} e^{2 x} d x \quad \text { Let } u & =x^{2} \\
d u & =2 x d x
\end{aligned} \begin{aligned}
& d v=e^{2 x} d x \\
&=x^{2} \cdot \frac{1}{2} e^{2 x}-\int \frac{1}{2} e^{2 x} 2 x d x \\
&=\frac{1}{2} e^{2 x} \\
& x^{2} e^{2 x}-\int x e^{2 x} d x
\end{aligned}
$$

And to find this, we have to repeat integration by parts.

Tabular integration is a way to organize our work when doing repeated integration by parts. To integrate $x^{2} e^{2 x}$,

The Gamma trick

If we have a definite integral from 0 to infinity, we often can skip using integration by parts.
If $b>0$ and a is an integer, then

$$
\int_{0}^{\infty} x^{a} \cdot e^{-b x} d x=\frac{a!}{b^{a+1}}
$$

Example

$$
\begin{gathered}
\int_{0}^{\infty} x^{2} e^{-2 x} d x=\frac{2!}{2^{2+1}}=\frac{1}{4} \\
-b=-2 \quad b=2 \\
a=2
\end{gathered}
$$

The Gamma trick
An example both ways: $\int_{0}^{\infty} 4 x^{2} e^{-x / 3} d x$
Derivative column Integral column

So $\int 4 x^{2} e^{-x / 3} d x$ is

$$
\begin{gathered}
\left(4 x^{2}\right)\left(-3 e^{-x / 3}\right)-(8 x)\left(9 e^{-x / 3}\right)+8 \cdot\left(-27 e^{-x / 3}\right) \\
=\left(-12 x^{2}-72 x-8 \cdot 27\right) e^{-x / 3}
\end{gathered}
$$

The Gamma trick

$$
\begin{aligned}
\int_{0}^{\infty} 4 x^{2} e^{-x / 3} & =\left.\left(-12 x^{2}-72 x-8 \cdot 27\right) e^{-x / 3}\right|_{0} ^{\infty} \\
& =8 \cdot 27
\end{aligned}
$$

or we can let $b=1 / 3$ and $a=2$ in our formula to get

$$
\begin{aligned}
\int_{0}^{\infty} x^{a} e^{-b x} & =\frac{a!}{b^{a+1}} \\
\int_{0}^{\infty} x^{2} e^{-x / 3} & =\frac{2!}{(1 / 3)^{2+1}}=2 \cdot 27 \\
\int_{0}^{\infty} 4 x^{2} e^{-x / 3} & =4 \cdot \frac{2!}{\left(\frac{1}{3}\right)^{2+1}}=8 \cdot 27
\end{aligned}
$$

$$
\begin{array}{rrl}
\int_{1}^{\infty} 4 x^{2} e^{-x / 3} & \text { We want } u=0 & \text { when } x=1 \\
u=x-1, & x=u+1
\end{array}
$$

$$
=\int_{0}^{\infty} 4(u+1)^{2} e^{(-u-1) / 3} d u
$$

$$
=4 e^{-1 / 3} \int_{0}^{\infty}\left(u^{2}+2 u+1\right) e^{-u / 3} d u
$$

and now we plug into $\int_{0}^{\infty} x^{a} e^{-b x}=\frac{a!}{b^{a+1}}$

$$
=4 e^{-1 / 3}\left[\frac{2!}{\left(\frac{1}{3}\right)^{3}}+2 \cdot \frac{1}{\left(\frac{1}{3}\right)^{2}}+\frac{1}{\frac{1}{3}}\right]
$$

The Gamma trick

Idea of Proof:

Let $u=x^{a}$ and $d v=e^{-b x} d x$

$$
\begin{aligned}
\int_{0}^{\infty} x^{a} e^{-b x} d x & =\left.x^{a} \cdot \frac{-1}{b} e^{-b x}\right|_{0} ^{\infty}-\int_{0}^{\infty} a x^{a-1}\left(\frac{-1}{b}\right) e^{-b x} d x \\
& =0-0+\frac{a}{b} \int_{0}^{\infty} x^{a-1} e^{-b x} d x \\
& =\frac{a}{b} \cdot \frac{(a-1)!}{b^{a-1+1}} \\
& =\frac{a!}{b^{a+1}}
\end{aligned}
$$

It also is related to $\mathrm{E}\left[X^{a}\right]$ when X is an exponential random variable as well as the density of a Gamma random variable.

