QFII-104-14 Correlation Pitfalls And Alternatives

Elliptical Distributions

Linear correlation is unproblematic when dealing with **elliptical distributions**, which include:

- Multivariate normal distribution
- Multivariate t-distribution

- Marginal distributions and correlation determine the joint distribution
 - Outside the elliptical world, there are infinitely many multivariate distributions that could fit
 - Correlation does not tell us anything about the degree of dependence in the tails of the underlying distribution
- ② Given marginal distributions F_1 and F_2 for X_1 and X_2 , all linear correlations between -1 and 1 can be attained through a suitable specification of the joint distribution F
 - In general, the attainable correlations depend on F_1 and F_2 , and form a closed interval $[\rho_{min}, \rho_{max}]$ (containing zero) that is a subset of [-1, 1]

Problems of Correlation as a Dependency Measure

- Correlation is simply a scalar measure of dependency
- Possible values of correlation depend on the marginal distributions of risks (i.e. not all values between -1 and 1 are attainable)
- Perfectly positively dependent risks do not necessarily have a correlation of 1, and vice versa
- A correlation of zero does not indicate independence of risks
- Orrelation is not invariant under transformation of risks
 - **Example**: $ln(X_1)$ and $ln(X_2)$ do not have the same correlation as X_1 and X_2
- Correlation is only defined when the variances of the risks are finite
 - Not appropriate for very heavy-tailed risks where variances appear infinite

Spearman's rank correlation

$$\rho_{\mathcal{S}}(X_i, X_j) = \rho\left(F_i(X_i), F_j(X_j)\right)$$

Disadvantages:

- Still has deficiencies 1 and 4 listed in previous slide
- Cannot be manipulated as easily as linear correlation
- Knowledge of rank correlation still will not allow us to find a unique multivariate distribution

Copulas

- Represent a way of extracting the dependence structure from the joint distribution
- By simply applying a copula function to prescribed marginal distributions, we can construct a multivariate distribution
- Best way to model dependency between risks! √