0.1 Probability Review - Outline
0.1.2 Severity Distributions

Density and CDF Distributions
Moments
Variances
Exercises

Cumulative Distribution Function (CDF)

The cumulative distribution function (CDF) of X is

$$
\begin{aligned}
F(x) & =\mathrm{P}[X \leq x] \\
F(\infty) & =\lim _{x \rightarrow \infty} \mathrm{P}[X \leq x]=1 \\
F(-\infty) & =0 \\
S(x) & =1-F(x)=\mathrm{P}[X>x]=\text { survival function }
\end{aligned}
$$

X is a loss variable if $X \geq 0$, in which case $F(x)=0$ for all $x<0$.

Discrete
0.1 Probability Review

Continuous
0.1.2 Severity Distributions

Mixed

Densities
X is a continuous variable if $F(x)$ is continuous. For us, this will also imply that $F(x)$ is differentiable. The density $f(x)$ is given by

$$
\begin{aligned}
f(x) & =F^{\prime}(x) \\
\mathrm{P}[a<X \leq b] & =\mathrm{P}[X \leq b]-\mathrm{P}[X \leq a]=F(b)-F(a) \\
& =\int_{a}^{b} f(x) d x \\
1 & =\int_{-\infty}^{\infty} f(x) d x \\
f(x) d x^{\prime} & =" \mathrm{P}[x<X \leq x+d x] \\
0 & \leq f(x)
\end{aligned}
$$

There is no upper limit on $f(x)$. In particular, $f(x)$ is not a probability, and can be greater than 1. For example, if X is uniform on $(0,0.1)$ then $f(x)=1 /(0.1-0)=10$

Moments

If X is discrete:

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{x} x \cdot \mathrm{P}[X=x] & \mathrm{E}[X] & =\int x \cdot f(x) d x \\
\mathrm{E}\left[X^{k}\right] & =\sum_{x} x^{k} \cdot \mathrm{P}[X=x] & \mathrm{E}\left[X^{k}\right] & =\int x^{k} \cdot f(x) d x \\
\mathrm{E}[g(X)] & =\sum_{x} g(x) \cdot \mathrm{P}[X=x] & \mathrm{E}[g(X)] & =\int g(x) \cdot f(x) d x
\end{aligned}
$$

For a mixed distribution:

- Use discrete formula over discrete values
- Use continuous formula over continuous values
- Sum the two pieces

Survival Function Approach

Recall that $S(x)=\mathrm{P}[X>x]=1-F(x)$
$S^{\prime}(x)=-F^{\prime}(x)=-f(x)$
For any loss variable X, integration by parts with $u=x$ and $v=-S(x)$ gives

$$
\begin{aligned}
\mathrm{E}[X] & =\int_{0}^{\infty} x \cdot f(x) d x \\
& =\left.x \cdot[-S(x)]\right|_{0} ^{\infty}+\int_{0}^{\infty} S(x) d x \\
& =0+\int_{0}^{\infty} S(x) d x
\end{aligned}
$$

Also true, but less useful: If $g(0)=0$,

$$
\mathrm{E}[g(X)]=\int_{0}^{\infty} g^{\prime}(x) \cdot S(x) d x
$$

Variance

$$
\begin{aligned}
\mu & =\mathrm{E}[X] \\
\sigma^{2} & =\operatorname{Var}[X] \\
& =\mathrm{E}\left[(X-\mu)^{2}\right] \\
& =\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} \\
\sigma & =\mathrm{SD}[X]
\end{aligned}
$$

Bernoulli shortcut: If $\mathrm{P}[X=a]+\mathrm{P}[X=b]=1$ then

$$
\operatorname{Var}[X]=(b-a)^{2} \cdot \mathrm{P}[X=a] \cdot \mathrm{P}[X=b]
$$

$$
\text { If } Y=c X \text { then } \mathrm{E}\left[Y^{k}\right]=\mathrm{E}\left[(c X)^{k}\right]=c^{k} \mathrm{E}\left[X^{k}\right]
$$

$$
\operatorname{Var}[c X]=c^{2} \cdot \operatorname{Var}[X]
$$

$$
\mathrm{SD}[c X]=|c| \cdot \mathrm{SD}[X]
$$

Definition (Coefficient of Variation)
$\operatorname{CV}[X]=\frac{\sigma}{\mu}$
Note that for $c>0$,

$$
\begin{aligned}
\mathrm{CV}[X] & =\frac{\sigma}{\mu}=\frac{\mathrm{SD}[X]}{\mathrm{E}[X]} \\
\mathrm{CV}[c X] & =\frac{\mathrm{SD}[c X]}{\mathrm{E}[c X]}=\frac{c \mathrm{SD}[X]}{c \mathrm{E}[X]} \\
& =\mathrm{CV}[X]
\end{aligned}
$$

Exercise 1

$\mathrm{P}[X=100]=0.3$ and $\mathrm{P}[X=300]=0.7$. Find the coefficient of variation of X.
$\mathrm{P}[X=100]=0.3$ and $\mathrm{P}[X=300]=0.7$. Find the coefficient of variation of X.

$$
\begin{aligned}
\mu=\mathrm{E}[X] & =0.3 \cdot 100+0.7 \cdot 300=240 \\
\mathrm{E}\left[X^{2}\right] & =0.3 \cdot 100^{2}+0.7 \cdot 300^{2}=66,000 \\
\sigma^{2}=\operatorname{Var}[X] & =\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} \\
& =66,000-240^{2}=8,400
\end{aligned}
$$

$$
\text { Or: } \begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =0.3 \cdot(100-240)^{2}+0.7 \cdot(300-240)^{2} \\
& =8,400
\end{aligned}
$$

Or Bernoulli Shortcut: $=(300-100)^{2} \cdot 0.3 \cdot 0.7=8,400$

$$
\mathrm{CV}[X]=\frac{\sigma}{\mu}=\frac{\sqrt{8,400}}{240}=0.382
$$

Exercise 2

X has survival function $S(x)=4^{3} / x^{3}$ for $x \geq 4$. Find $\mathrm{E}[X]$.

Exercise 2
X has survival function $S(x)=4^{3} / x^{3}$ for $x \geq 4$. Find $\mathrm{E}[X]$.
From the formula given, $S(4)=4^{3} / 4^{3}=1$. But $S(x) \leq 1$ because it is a probability, and $S(x)$ is decreasing, so $S(x)=1$ for $x<4$

$$
\begin{aligned}
S(x) & = \begin{cases}1 & x<4 \\
\frac{4^{3}}{x^{3}} & x \geq 4\end{cases} \\
\mathrm{E}[X] & =\int_{0}^{\infty} S(x) d x=\int_{0}^{4} 1 d x+\int_{4}^{\infty} \frac{4^{3}}{x^{3}} d x \\
& =4+\left.\frac{-1}{2} \cdot \frac{4^{3}}{x^{2}}\right|_{4} ^{\infty}=4+\frac{4}{2}=6
\end{aligned}
$$

Exercise 2 Cont.

Alternative approach using densities:

$$
\begin{aligned}
S(x) & = \begin{cases}1 & x<4 \\
\frac{4^{3}}{x^{3}} & x \geq 4\end{cases} \\
f(x) & = \begin{cases}0 & x<4 \\
\frac{3 \cdot 4^{3}}{x^{4}} & x>4\end{cases} \\
\mathrm{E}[X] & =\int_{4}^{\infty} x \cdot \frac{3 \cdot 4^{3}}{x^{4}} d x=\int_{4}^{\infty}\left(3 \cdot 4^{3}\right) \cdot x^{-3} d x \\
& =\left.3 \cdot 4^{3} \cdot \frac{x^{-2}}{-2}\right|_{4} ^{\infty}=3 \cdot 4^{3} \cdot \frac{1}{2 \cdot 4^{2}}=6
\end{aligned}
$$

Or: X is a single parameter Pareto with $\alpha=3$ and $\theta=4$, so $\mathrm{E}[X]=\frac{\alpha \theta}{\alpha-1}=\frac{3 \cdot 4}{3-1}=6$

