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Sources and Objectives

This lesson comes from Frees sections 11.1-11.2 and is designed to
address SRM Syllabus learning objective 2(d).
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Binary Response Variables and Regression

Bernoulli Random Variable (a.k.a. Binary)

Y “

#

0 with prob. 1´ π

1 with prob. π
−Ñ ErY s “ π VarpY q “ πp1´ πq

Ex. Yi “ 1 if customer i defaults on credit account. Suppose that for
each customer we also know Xi “ customer i ’s account balance.

Plot of Y vs. X : points at height 0 or 1 at horizontal locations X .

Statistical Learning model: Yi “ f pXiq ` ε

Classification: Aims to predict Yi . f̂ pXiq “ 0 or 1, e2
i “ 0 or 1

Regression: Pretend Y is quantitative, try to predict frequency

Yi “ f pXiq ` ε −Ñ ErYi s “ πi “ f pXiq
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Challenges for Regression

Regression for Yi “ f pXiq`ε −Ñ ErYi s “ πi “ f pXiq faces challenges.

§ 0 ď πi ď 1, so 0 ď f pXiq ď 1 is needed to make sense of
π̂ “ f̂ pXiq or to even fit model using MLE

§ Yi “ 0 or 1, so 0 ď f pXiq ď 1 −Ñ ε is not normally distributed,
typical analysis using the ei is not useful

§ VarpYiq depends on πi . If πi depends on Xi −Ñ
heteroscedasticity, model estimates better not depend on
homoskedasticity.
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The Null Model

The Null Model ignores Xi , so f pXiq “ β0

π̂i “ f̂ pXiq “ β̂0 for all i .

Least squares: Computations same as when Y is continuous.

Minimize
ř

pyi ´ β̂0q
2 −Ñ β̂0 “ sY “ proportion of 1’s in the sample.

The MLE of β̂0 is also sY .

As before, if πi “ π “ β0 is the correct model, then

β̂0 « N pπ,VarpY q{nq “ N
ˆ

π,
πp1´ πq

n

˙

Of course, in most cases we will expect πi to depend on Xi , so we will
need other models.
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Linear Probability Model

First attempt: Linear Probability model ErYi s “ β0 ` β1Xi

Advantages:
§ Computing least squares β̂0, β̂1 is easy
§ Interpretation: β1 is the amount π increases with each unit

increase in X

Main drawback: If β1 ‰ 0, β0 ` β1X won’t always be in r0, 1s

If 0 ă β0 ` β1Xi ă 1 over the training data, then least squares β̂0, β̂1

are unbiased, but their variances are not optimal, due to
heteroscedasticity.

Specification error is common as well, since π usually cannot be linear
in X over the entire theoretical range of X .

Upshot: There are times for this model, but usually there’s a better
choice.
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Dealing with Heteroscedasticity

In the cases where the linear probability model is preferred, there are
two options to treat heteroscedasticity:

1. Compute standard errors in a way that incorporates
heteroscedasticity - heteroskedastic robust standard errors

2. Use two-stage weighted least squares
§ Use least squares to estimate parameters.
§ Use variance estimates from the results to rescale the observations

so that they all have estimated variance 1.
§ Run least squares again on the rescaled observations.

We will talk more about what the R-routines are doing in these cases
later on.
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Exercise 1
A model is to be built to compute the expected number of defaults for a set of
loans. In the training data set, there are 4 individuals with a balance of
$10,000, of which 2 defaulted, 3 with a balance of $12,000, of which 1
defaulted, and 1 with a balance of $16,000, which also defaulted. The null
model is computed for this training data, and is applied to a new set of loans
which consists of 7 individuals with a balance of $11,000, 10 with a balance of
$14,000, and 3 with a balance of $15,000. How many loans are expected to
default under the null model?
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The null model ignores the balance, and predicts that every loan will default

with probability β̂0 “ sY “
4 defaults

8 total loans
“ 0.5.

The test data set has 20 total (independent, we assume) loans, so the number
that default, according to the null model, will be the sum of 20 Bernoulli
random variables with probability π “ 0.5. The expected value of this
Binomial(20,0.5) random variable is 20 ¨ 0.5 “ 10 .
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Exercise 2

A linear probability model to compute the probability of defaults as a
function of loan balance in thousands of dollars, resulting in
β̂0 “ ´0.2667 and β̂1 “ 0.067. If this model is applied to a new set of
loans which consists of 7 individuals with a balance of $11,000, 10 with
a balance of $14,000, and 3 with a balance of $15,000. How many
loans are expected to default under the linear probability model?
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Predicted probability of default is different for each loan amount.

For each loan of $11K, π̂ “ ´0.2667` 0.067 ¨ 11 “ 0.4703

For each loan of $14K, π̂ “ ´0.2667` 0.067 ¨ 14 “ 0.6713

For each loan of $15K, π̂ “ ´0.2667` 0.067 ¨ 15 “ 0.7383

Erdefaultss “ 7 ¨ 0.4703` 10 ¨ 0.6713` 3 ¨ 0.7383 “ 12.2
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