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Rat Pup Study

30 female rats received randomly assigned drug dose (control, low,
or high). Birth weights of their pups are then compared.

2 level model: Level 1 is ratpup, level 2 is litter.

Dependent variable: rat pup birth weight

Fixed effect covariates: sex, treatment, litter size, treatment * sex
interaction

Random effects: random intercept for each litter
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Analysis Plan

We will use a ‘top-down’ strategy.

1. Start with ‘loaded mean structure’ that includes as many fixed
efffect covariates as possible. Here, treatment, sex, litter size,
and treatment * sex interaction.

2. Choose structure for random effects. Here that means having
random intercepts. Test whether or not we need to include
random intercepts

3. Select covariance structure for residuals. Test same for all
treatment groups vs. different for all 3 vs. one variance for
control and a 2nd for treatment groups

4. Reduce the model by testing whether or not certain
fixed-effects are needed. Here, test if we can drop sex term, and
test to see if we can drop treatment term.

B.3 Case Studies Revisited B.3.1 Rat Pup Take 2 3 / 18

Loaded Mean Structure Model (Model 3.1)

Include all possible fixed effects, plus random intercepts.
Model 3.1:

Weightij = β0 + β1 × Highj + β2 × Lowj + β3 × Femaleij

+ β4 × Litsizej + β5 × Highj × Femaleij

+ β6 × Lowj × Femaleij + uj + εij

uj ∼ N(0, σ2litter)

εij ∼ N(0, σ2)

This model has 9 parameters. β0 through β6 are the first 7,
σ2, σ2litter are the other 2.
Want to test if we need to include random intercepts. Compare
with model with only fixed effect terms. Or equivalently, σ2litter = 0
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Model 3.1 Output
Our loaded means model 3.1 is represented in R as

> model3 . 1 . f i t <− lme ( weight ˜ treatment + sex1 + l i t s i z e +
treatment ∗ sex1 , random = ˜1 | l i t t e r , ratpup , method = ”REML”)

> summary(model3 . 1 . f i t )
Linear mixed−e f f e c t s model f i t by REML
Data : ratpup

AIC BIC logL ik
419.1043 452.8775 −200.5522

Random e f f e c t s :
Formula : ˜1 | l i t t e r

( I n t e r c ep t ) Res idua l
StdDev : 0 .3106722 0.404337
Fixed e f f e c t s : weight ˜ treatment + sex1 + l i t s i z e + treatment ∗ sex1

Value Std . Error DF t−value p−value
( In t e r c ep t ) 8 .323340 0.27333009 292 30.451605 0 .0000
treatmentHigh −0.906057 0.19154238 23 −4.730320 0 .0001
treatmentLow −0.467040 0.15818328 23 −2.952521 0 .0071

AIC = −2 × logLik + 2p where p = # of parameters
p = (AIC + 2 × logLik)/2 = 9

Model 3.1 Output (cont).

We will first work on adjusting our random factors. But peeking at the
fixed effects,

> anova ( model3 . 1 . f i t )

numDF denDF F−value p−value
( I n t e r c e p t ) 1 292 9093.772 <.0001
treatment 2 23 5 .082 0 .0149
sex1 1 292 52 .602 <.0001
l i t s i z e 1 23 47 .374 <.0001
treatment : sex1 2 292 0 .466 0 .6282

It looks like the treatment * sex terms will end up being discarded in
the end.

Note that these fixed effects have 7 ‘numerator degrees of freedom’ for
β0 through β6.
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Testing Hypothesis 3.1
Do we want random intercepts? Compare with a model with same
fixed effects, no random intercept. Equivalently, σ2litter = 0

> model3 . 1 a . f i t <− g l s ( weight ˜ treatment + sex1 + l i t s i z e
+ treatment ∗ sex1 , data = ratpup )

> summary(model3 . 1 a . f i t )
Genera l i zed l e a s t squares f i t by REML

Model : weight ˜ treatment + sex1 + l i t s i z e + treatment ∗ sex1
Data : ratpup

AIC BIC logL ik
506.5099 536.5305 −245.255

> anova (model3 . 1 . f i t , model3 . 1 a . f i t )
Model df AIC logL ik Test L . Ratio p−value

model3 . 1 . f i t 1 9 419.1043 −200.5522
model3 . 1 a . f i t 2 8 506.5099 −245.2550 1 vs 2 89.40562 <.0001

By hand, use likelihood ratio test, with REML in both models because
we are testing random effects.
LRT has 1 d.o.f. because different in models only is in σ2litter
Or: H0 (σ2litter = 0) has 8 parameters, H1 has 9 and 9 − 8 = 1.

Adjustment for testing Variance = 0
Because σ2litter cannot be negative, the test statistic doesn’t have a
χ2
1 distribution, but rather is a 50-50 mixture of χ2

1 and 0.

Details are tricky, tl;dr: we need to divide p-value by 2.

Here, < .0001/2 is still tiny, we still reject H0 and keep the random
intercepts.

Suppose the likelihoods were interesting. E.g., −200.55 in
alternative, −202.47 in null, for a test stat of
2[−200.55 − (−202.47)] = 3.84.

That is the 95th percentile of a χ2
1 variable, normally making

p = 0.05. Dividing by 2 gives p = 0.025.

This only happens ‘on the boundary of our parameter space’ i.e., for
testing variance = 0.
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Choosing Residual Variance: Model 3.2A
Next, want to choose variance structure for residuals. Want
independent residuals, but let’s test allowing residual variance to
vary based on treatment

> model3 . 2 a . f i t <− lme ( weight ˜ treatment + sex1 + l i t s i z e
+ treatment ∗ sex1 , random = ˜1 | l i t t e r , ratpup , method = ”REML” ,
weights = varIdent ( form = ˜1 | treatment ) )

> summary(model3 . 2 a . f i t )
Linear mixed−e f f e c t s model f i t by REML

Random e f f e c t s :
Formula : ˜1 | l i t t e r

( I n t e r c ep t ) Res idua l
StdDev : 0 .3134846 0.5147948

Variance func t i on :
St ruc ture : D i f f e r e n t standard dev i a t i on s per stratum
Formula : ˜1 | treatment
Parameter e s t imate s :
Control Low High

1.0000000 0.5649830 0.6394383

Interpreting Residual Variance Output
What does that mean?

( I n t e r c ep t ) Res idua l
StdDev : 0 .3134846 0.5147948

Control Low High
1.0000000 0.5649830 0.6394383

The intercept StdDev is the random intercept standard deviation.
The factors under control, low, high are multipliers to scale residual
standard deviation.

σ̂2litter = 0.31352

σ̂2Control = (0.5148 · 1)2

σ̂2Low = (0.5148 · 0.5649)2 = 0.29082

σ̂2High = (0.5148 · 0.6394)2 = 0.32922

For comparison, Model 3.1 had σ̂2litter = 0.31072 and
σ̂2Control = σ̂2High = σ̂2Low = σ̂2 = 0.40432
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Testing Variance Structure

Should we use this more complicated variance structure?

Use LRT to compare our original loaded means model 3.1 with 3.2A in
which the residual variance varied by treatment.

> anova (model3 . 1 . f i t , model3 . 2 a . f i t )
Model df AIC logL ik Test L . Ratio p−value

model3 . 1 . f i t 1 9 419.1043 −200.5522
model3 . 2 a . f i t 2 11 381.8847 −179.9423 1 vs 2 41.21964 <.0001

p-value is small, so we reject H0 (model 3.1) in favor of the more
complicated model. We don’t divide the p-value by 2 because we aren’t
testing σ2 = 0.

LRT has 2 dof: σ2 is being replaced by 3 variance parameters, for an
increase of 2 parameters.
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Grouping Low and High Variances

In Model 3.2A, σ̂2High ≈ σ̂2Low
Can we have just 2 residual variances instead of 3?
σ̂2Control and σ̂2High / Low?

> ratpup$tr tgrp [ treatment ==”Control ” ] <− 1
> ratpup$tr tgrp [ treatment ==”Low” | treatment ==”High ” ] <− 2
> ratpup

pup id weight sex l i t t e r l i t s i z e treatment sex1 t r t g rp
1 1 6 .60 Male 1 12 Control 0 1
2 2 7 .40 Male 1 12 Control 0 1
256 256 5 .97 Female 20 16 Low 1 2
257 257 6 .11 Female 20 16 Low 1 2
258 258 5 .09 Male 21 14 High 0 2
259 259 5 .57 Male 21 14 High 0 2
> model3 . 2 b . f i t <− lme ( weight ˜ treatment + sex1 + l i t s i z e

+ treatment ∗ sex1 , random = ˜1 | l i t t e r , ratpup ,
method = ”REML” , weights = varIdent ( form = ˜1 | t r t g rp ) )
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Testing Variance Structures

Model 3.1 had 1 residual variance parameter
Model 3.2A had 3, one per treatment group
Model 3.2B has 2, control and high/low

> anova (model3 . 2 a . f i t , model3 . 2 b . f i t )
Model df AIC logL ik Test L . Ratio p−value

model3 . 2 a . f i t 1 11 381.8847 −179.9423
model3 . 2 b . f i t 2 10 381.0807 −180.5404 1 vs 2 1.196053 0 .2741

The p-value is large, so we prefer the simpler model 3.2B (with 2
variances)

> anova (model3 . 1 . f i t , model3 . 2 b . f i t )
Model df AIC ogLik Test L . Ratio p−value

model3 . 1 . f i t 1 9 419.1043 −200.5522
model3 . 2 b . f i t 2 10 381.0807 −180.5404 1 vs 2 40.02358 <.0001

The p-value is small, so we prefer the more complicated model 3.2B.
In neither case did we divide p-values by 2 because we aren’t testing
σ2 = 0 but rather σ21 = σ22.
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Testing Fixed Effects

We have chosen our random effect and variance structure.

Next, we choose what fixed effects to keep.
One way to do so is with F-tests from the R output.

> anova ( model3 . 2 b . f i t )
numDF denDF F−value p−value

( I n t e r c e p t ) 1 292 9027.740 <.0001
treatment 2 23 4 .241 0 .0271
sex1 1 292 61 .568 <.0001
l i t s i z e 1 23 49 .577 <.0001
treatment : sex1 2 292 0 .317 0 .7288

The treatment * sex terms are not significant so we can omit them.

The treatment term is less clear. One approach would be to do a
likelihood ratio test to see if we want to include it
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LRT for fixed effect
A LRT for a fixed effect requires comparing two ML models.

> model3 . 3 . ml . f i t <− lme ( weight ˜ treatment + sex1 + l i t s i z e ,
random = ˜ 1 | l i t t e r , ratpup , method = ”ML” ,
weights = varIdent ( form = ˜ 1 | t r t g rp ) )

> model3 . 3 a . ml . f i t <− lme ( weight ˜ sex1 + l i t s i z e ,
random = ˜ 1 | l i t t e r , ratpup , method = ”ML” ,
weights = varIdent ( form = ˜ 1 | t r t g rp ) )

> # Test 3 . 3 . ml vs 3 .3 a . ml : can we drop treatment term?
> anova (model3 . 3 . ml . f i t , model3 . 3 a . ml . f i t )

Model df AIC logL ik Test L . Ratio p−value
model3 . 3 . ml . f i t 1 8 353.7734 −168.8867
model3 . 3 a . ml . f i t 2 6 368.3706 −178.1853 1 vs 2 18.59723 1e−04

We have 2 degrees of freedom because there were two treatment
indicator variables (for low and high dose). Equivalently, there were
(3 − 1) = 2 treatment classes. The p-value is small, so we keep the
more complicated model with the treatment effects.
(We probably would anyways, since treatment effects are the point of
the study)

Final Model

For our final model, we thus want to keep the treatment term. We
want to fit with REML to get unbiased variance estimators.

> model3 . 3 . reml . f i t <− lme ( weight ˜ sex1 + l i t s i z e + treatment ,
random = ˜ 1 | l i t t e r , ratpup , method = ”REML” ,
weights = varIdent ( form = ˜ 1 | t r t g rp ) )

> summary(model3 . 3 . reml . f i t )
Fixed e f f e c t s : weight ˜ sex1 + l i t s i z e + treatment

Value Std . Error DF t−value p−value
( In t e r c ep t ) 8 .327633 0.27406957 294 30.385106 0 .0000
sex1 −0.343431 0.04204323 294 −8.168531 0 .0000
l i t s i z e −0.130681 0.01855194 23 −7.044036 0 .0000
treatmentHigh −0.862268 0.18293359 23 −4.713556 0 .0001
treatmentLow −0.433663 0.15226167 23 −2.848140 0 .0091
> anova (model3 . 3 . reml . f i t )

numDF denDF F−value p−value
( In t e r c ep t ) 1 294 9029.091 <.0001
sex1 1 294 63 .596 <.0001
l i t s i z e 1 23 33 .658 <.0001
treatment 2 23 11 .387 4e−04
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Recap

1. We started with Model 3.1 with all fixed effects, random
intercepts, common residual variance.

2. Using LRT, rejected Model 3.1A: σ2litter = 0, kept random
intercept. Divided p-value by 2 because testing a variance = 0.

3. Using LRTs, selected 3.2B with σ2High = σ2Low. Didn’t have to
divide p-value by 2 because testing 2 variances equaling each
other, not 0.

4. Using F-test on 3.2B, chose to drop sex * treatment interaction
term.

5. All of those tests so far used REML estimation
6. Tested significance of treatment term in Model 3.3. Used LRT

with ML estimation because testing for fixed effect.
7. Re-ran Model 3.3 with REML estimation to get unbiased variance

estimators
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Exercise

You wish to decide between having a single variance for all residuals
versus a variance structure that varies between 3 different classes. To
do so, you wish to perform a likelihood ratio test. Given the following
loglikelihoods under both REML and ML estimation, what is the
outcome of the test at 5% and 2.5% significance levels?

Model REML logLik ML lokLik

1 residual variance −200.5522 −200.4143

3 residual variances −196.8517 −196.8158
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Exercise

You wish to decide between having a single variance for all residuals
versus a variance structure that varies between 3 different classes. To
do so, you wish to perform a likelihood ratio test. Given the following
loglikelihoods under both REML and ML estimation, what is the
outcome of the test at 5% and 2.5% significance levels?

Model REML logLik ML lokLik

1 residual variance −200.5522 −200.4143

3 residual variances −196.8517 −196.8158

We are testing variances, not fixed effects, so want the REML
numbers. We have 3 − 1 = 2 degrees of freedom.
Don’t have to divide p-value by 2 because aren’t testing variance at 0.
The simpler, 1 variance model is the null.
T = 2[(−196.8517) − (−200.5522)] = 7.401 > 7.38
That exceeds the 5% and 2.5% significance level critical values, so we
reject the null and use the more complicated 3 variance model.
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