The Volatility Smile Ch 18: Patterns of Volatility Change

- Various heuristic relationships between $\frac{\partial \Sigma}{\partial K}$ and $\frac{\partial \Sigma}{\partial S}$, such as:
 - The sticky strike rule
 - The sticky moneyness rule
 - The sticky delta rule
 - The sticky local volatility model

When volatility is not constant, the Δ of a call option is given by:

$$\Delta = \Delta_{BSM} + \frac{\partial C}{\partial \Sigma} \frac{\partial \Sigma}{\partial S}$$

When volatility is not constant, the Δ of a call option is given by:

$$\Delta = \Delta_{BSM} + \frac{\partial C}{\partial \Sigma} \frac{\partial \Sigma}{\partial S}$$

How to estimate $\frac{\partial \Sigma}{\partial S}$?

When volatility is not constant, the Δ of a call option is given by:

$$\Delta = \Delta_{BSM} + \frac{\partial C}{\partial \Sigma} \frac{\partial \Sigma}{\partial S}$$

How to estimate $\frac{\partial \Sigma}{\partial S}$?

• The slope of the volatility smile, $\frac{\partial \Sigma}{\partial K}$, is what is observed from market data

Assumes options with a fixed strike will always have the same implied volatility

Assumes options with a fixed strike will always have the same implied volatility

A linear approximation is:

$$\Sigma(\mathcal{S}, \mathcal{K}) = \Sigma_0 - \beta(\mathcal{K} - \mathcal{S}_0)$$

Assumes options with a fixed strike will always have the same implied volatility

A linear approximation is:

$$\Sigma(\boldsymbol{S},\boldsymbol{K}) = \Sigma_0 - \beta(\boldsymbol{K} - \boldsymbol{S}_0)$$

• β is a constant that determines the slope of the skew

Assumes options with a fixed strike will always have the same implied volatility

A linear approximation is:

$$\Sigma(S, K) = \Sigma_0 - \beta(K - S_0)$$

β is a constant that determines the slope of the skew
The ATM implied volatility of an option is:

$$\Sigma_{ATM}(S) = \Sigma(S, S) = \Sigma_0 - \beta(S - S_0)$$

Assumes options with a fixed strike will always have the same implied volatility

A linear approximation is:

$$\Sigma(S, K) = \Sigma_0 - \beta(K - S_0)$$

β is a constant that determines the slope of the skew
The ATM implied volatility of an option is:

$$\Sigma_{ATM}(S) = \Sigma(S, S) = \Sigma_0 - \beta(S - S_0)$$

Under the presence of negative skew (β > 0), the ATM implied volatility <u>decreases</u> when S <u>increases</u>

The Volatility Smile Ch 18

The Infinite Actuary - QFI Quant

An option's implied volatility only depends on its moneyness, K/S

An option's implied volatility only depends on its moneyness, K/S

A linear approximation of the implied volatility is:

$$\Sigma(S, K) = \Sigma_0 - \beta(K - S)$$

An option's implied volatility only depends on its moneyness, K/S

A linear approximation of the implied volatility is:

$$\Sigma(S, K) = \Sigma_0 - \beta(K - S)$$

• The implied volatility of an option with the same *moneyness* should always be the same, regardless of the level of the stock price

An option's implied volatility only depends on its moneyness, K/S

A linear approximation of the implied volatility is:

$$\Sigma(S, K) = \Sigma_0 - \beta(K - S)$$

- The implied volatility of an option with the same *moneyness* should always be the same, regardless of the level of the stock price
- When $\beta > 0$ (negative skew), it follows that $\frac{\partial \Sigma}{\partial S} > 0$

An option's implied volatility only depends on its moneyness, K/S

A linear approximation of the implied volatility is:

$$\Sigma(S, K) = \Sigma_0 - \beta(K - S)$$

- The implied volatility of an option with the same *moneyness* should always be the same, regardless of the level of the stock price
- When $\beta > 0$ (negative skew), it follows that $\frac{\partial \Sigma}{\partial S} > 0$
- Thus, under the sticky-moneyness rule, the correct hedge ratio for a standard option will be **greater** than the BSM delta

• When viewing implied volatilities in terms of delta, the shape of the volatility smile tends to be more stable

- When viewing implied volatilities in terms of delta, the shape of the volatility smile tends to be more stable
- This is because the delta of an option depends on the moneyness, volatility, and time-to expiration of the option (as opposed to just moneyness alone)

- When viewing implied volatilities in terms of delta, the shape of the volatility smile tends to be more stable
- This is because the delta of an option depends on the moneyness, volatility, and time-to expiration of the option (as opposed to just moneyness alone)

A linear approximation of the sticky-delta rule is:

$$\Sigma(\boldsymbol{\mathcal{S}},\boldsymbol{\mathcal{K}}) = \Sigma_0 - \beta \frac{\ln\left(\frac{\boldsymbol{\mathcal{K}}}{\boldsymbol{\mathcal{S}}}\right)}{\Sigma_{\boldsymbol{\mathcal{A}TM}}(\boldsymbol{\mathcal{S}})\sqrt{\tau}}$$

 \otimes

For the strikes of options that are close to ATM, use the following linear approximation:

$$\Sigma(S, K) = \Sigma_0 + 2\beta S_0 - \beta(S + K)$$

 \otimes

For the strikes of options that are close to ATM, use the following linear approximation:

$$\Sigma(\boldsymbol{S},\boldsymbol{K}) = \Sigma_0 + 2\beta \boldsymbol{S}_0 - \beta(\boldsymbol{S} + \boldsymbol{K})$$

• From this equation, it follows that:

$$\frac{\partial \Sigma}{\partial S} = \frac{\partial \Sigma}{\partial K} = -\beta$$

 \otimes

For the strikes of options that are close to ATM, use the following linear approximation:

$$\Sigma(\boldsymbol{S},\boldsymbol{K}) = \Sigma_0 + 2\beta \boldsymbol{S}_0 - \beta(\boldsymbol{S} + \boldsymbol{K})$$

• From this equation, it follows that:

$$\frac{\partial \Sigma}{\partial S} = \frac{\partial \Sigma}{\partial K} = -\beta$$

• Thus, an increase in the index has the same impact on the implied volatility as an equal increase in the strike

 \otimes

For the strikes of options that are close to ATM, use the following linear approximation:

$$\Sigma(\boldsymbol{S},\boldsymbol{K}) = \Sigma_0 + 2\beta \boldsymbol{S}_0 - \beta(\boldsymbol{S} + \boldsymbol{K})$$

• From this equation, it follows that:

$$\frac{\partial \Sigma}{\partial S} = \frac{\partial \Sigma}{\partial K} = -\beta$$

- Thus, an increase in the index has the same impact on the implied volatility as an equal increase in the strike
- This is the opposite of what was assumed for the sticky moneyness and sticky delta rules

Heuristic	Linear Approximation of Σ	Δ vs. Δ_{BSM}
Sticky strike	$\Sigma(\boldsymbol{S},\boldsymbol{K}) = \Sigma_0 - \beta(\boldsymbol{K} - \boldsymbol{S}_0)$	$\Delta = \Delta_{BSM}$
Sticky moneyness	$\Sigma(S, K) = \Sigma_0 - \beta(K - S)$	$\Delta > \Delta_{BSM}$
	$\ln\left(\frac{\kappa}{S}\right)$	
Sticky delta	$\Sigma(\boldsymbol{S},\boldsymbol{K}) = \Sigma_0 - \beta \frac{\left(\boldsymbol{S}\right)}{\Sigma_{ATM}(\boldsymbol{S})\sqrt{\tau}}$	$\Delta > \Delta_{BSM}$
Local volatility	$\Sigma(S, K) = \Sigma_0 + 2\beta S_0 - \beta(S + K)$	$\Delta < \Delta_{BSM}$