

This is an excerpt from the full handout file for sample purposes

Experience Study Calculations

Basic Terminology and Mortality Concepts

Annual Exposure Method

Reflecting Withdrawal (Lapse) Rates Individual Exposure Calculation (Cohort Study) Multi-Year Studies Period Study Examples Review of Individual Exposure Period Studies Visualizing the Grouped Exposure (No Decrements) Grouped Exposure Formulas with Decrements Grouped Exposure Example Amount-Weighted Studies Individual Amount-Weighted Example Withdrawal Studies Actual To Expected (A/E) Analysis Uses of A/E Analysis

Utilization Studies

Practical Considerations

Product-Related Considerations

Experience Study Calculations

Reflecting Withdrawal (Lapse) Rates

If lives can withdraw due to lapse, etc.:

$$\ell_{x+1} = \ell_x - d_x - w_x$$

Using the **Balducci Hypothesis**, we can calculate $q_x = d_x/E_x$

$$E_x = \begin{cases} \ell_x - \sum_{i=1}^{w_x} (1 - t_i) = (\ell_x - w_x) + \sum_{i=1}^{w_x} t_i & \text{for individual calculations} \\ \ell_x - \frac{1}{2}w_x & \text{for grouped calculations} \end{cases}$$

 t_i = fraction of the year when each withdrawal *i* occurs

Balducci assumes mortality decreases over the course of the year

• Not realistic, but not a problem if w_x 's are small

Experience Study Calculations	Annual Exposure Method	11 / 48
-------------------------------	------------------------	---------

Individual Exposure Calculation (Cohort Study)

Assume a 4-year LY study on 3 lives

		Exposure for age <i>x</i>			
Life	Situation	65	66	67	68
А	Survives to 69th birthday	1.0000	1.0000	1.0000	1.0000
В	Dies between 66th and 67th birthdays	1.0000	1.0000		
С	Lapses 110 days after 67th birthday	1.0000	1.0000	0.3014	
	Annual Exposure (E_x)	3.0000	3.0000	1.3014	1.0000

- Deaths get a full year of exposure (Life B)
- Withdrawal exposure for Life C in year of age 66 = 110/365
- Annual exposure by year:

 $\ell_{65} = \ell_{66} = 3 = E_{65} = E_{66}$ since no *d*'s or *w*'s $\ell_{67} = 3 - 1 - 0 = 2$ since 1 death occurred $E_{67} = \ell_{67} - 1(1 - 0.3014) = 2 - 0.6986 = 1.3014$ $\ell_{68} = 2 - 0 - 1 = 1 = E_{68}$ since no other decrements

Multi-Year Studies

Exposure-weighted average mortality rate over an *N*-year period starting at age *x*:

$$q = \frac{\sum_{t=0}^{N} E_{x+t} q_{x+t}}{\sum_{t=0}^{N} E_{x+t}} = \frac{\sum_{t=0}^{N} d_{x+t}}{\sum_{t=0}^{N} E_{x+t}}$$

From the previous slide, the probability of someone age 65 dying before age 69:

$$_4q_{65} = \frac{1}{3+3+1.3014+1} = 12\%$$

Not very credible since we only had 3 lives!

Experience Study Calculations	Annual Exposure Method	13 / 48
		10 / 10

Period Study: Individual Exposure Example 1

Assume the following:

- Study runs from 1/1/2010 to 12/31/2013
- ► Minimum age = 65
- ▶ Policyholder turns 65 on $10/1/2010 \approx 75\%$ into 2010
- Policyholder survives entire study

Total life years exposed = 3.25

Experience Study Calculations

Period Study: Individual Exposure Example 2

- Study runs from 1/1/2010 to 12/31/2013
- ► Minimum age = 65
- Policyholder turned 65 on $4/1/2009 \approx 25\%$ into 2009
- Policyholder survives entire study

Experience Study Calculations	Annual Exposure Method	15 / 48
· ·	*	

Period Study: Individual Exposure Example 3

Assume Example 2 except that the policyholder lapses on 10/1/2012

If the policyholder had <u>died</u> on 10/1/2012, $E_{68} = 1$ (always give a full year)

Review of Individual Exposure Period Studies

- Exposure depends on when the min age is met (before or after study start)
- First or last year will have partial exposures for each life
 - Exceptions: January 1 birthdays or deaths in final partial year
- Deaths and withdrawals are treated the same as a cohort study
- Aggregate mortality rate is calculated the same as before

$$q = \frac{\sum_{t=0}^{N} d_{x+t}}{\sum_{t=0}^{N} E_{x+t}}$$

Experience Study Calculations

Annual Exposure Method

17 / 48