SECTION 2 INTEREST RATES

ACCUMULATION FUNCTION

$a(t)=$ Value of \$1 after t years

$A(t)=$ Value of $\$ k$ after t years $=k[a(t)]$

RATE OF INTEREST

Interest earned in year n :

$$
i_{n}=\frac{A(n)-A(n-1)}{A(n-1)}
$$

Compound interest: $a(t)=(1+i)^{t}$
$a(0)=1$
$a(1)=1+i$

Simple interest: $\quad a(t)=(1+i t)$

13

RATE OF DISCOUNT

Discount:
 Interest at the beginning of the year

Discount earned in year n :
$d_{n}=A(n)-A(n-1)$
$A(n)$

RATE OF DISCOUNT

Assuming compound interest, we have

$$
\begin{aligned}
d_{1} & =\frac{(1+i)-1}{(1+i)} \\
& =\frac{i}{(1+i)} \\
& =i v
\end{aligned}
$$

$$
\begin{aligned}
d_{1} & =\frac{(1+\mathrm{i})-1}{(1+\mathrm{i})} \\
& =1-\frac{1}{(1+\mathrm{i})} \\
& =1-\mathrm{v}
\end{aligned}
$$

RATE OF DISCOUNT

Assuming compound interest, we have

$$
\begin{aligned}
i-d & =i-i v \\
& =i(1-v) \\
& =i d
\end{aligned}
$$

Compound discount: $a(t)=(1-d)^{-t}$
Simple discount:

$$
a(t)=(1-t d)^{-1}
$$

NOMINAL RATES: INTEREST AND DISCOUNT

Nominal rates - expressed as annual rate, convertible more frequently

$$
\begin{aligned}
& 1+i=\left[\frac{1+i^{(m)}}{m}\right]^{m} \\
& i^{(m)}=\left[(1+i)^{(1 / m)}-1\right] m
\end{aligned}
$$

EXAMPLE
Effective rate
12\% per annum
$\mathrm{i}=12 \%$
Nominal rate
12\% per annum, payable monthly
$i^{(12)}=12 \%$
$\mathrm{i}=(1.01)^{12}-1$

NOMINAL RATES: INTEREST AND DISCOUNT

Nominal rates - expressed as annual rate, convertible more frequently

$$
\left.\begin{array}{rl}
(1-d)^{-1} & \left.=\left[1-\frac{d^{(m)}}{m}\right]\right]^{-m}=1+i \\
& =\left[1-(1-d)^{(1 / m)}\right] m \\
& =\left[1-(1+i)^{(-1 / m)}\right] m
\end{array}\right] \begin{aligned}
d^{(m)} \\
\frac{i^{(m)}}{m}-\frac{d^{(m)}}{m}=\frac{i^{(m)}}{m} \cdot \frac{d^{(m)}}{m}
\end{aligned}
$$

FORCE OF INTEREST AND DISCOUNT
$i^{(m)} \quad=\left[(1+i)^{(1 / m)}-1\right] m$
$d^{(m)}=\left[1-(1-d)^{(1 / m)}\right] m$
Force of interest is the limiting value of $i^{(m)}$ as the compounding frequency increases:
$\lim _{m \rightarrow \infty} j^{(m)}=\lim _{m \rightarrow \infty} d^{(m)}=\delta$

CALCULUS REVIEW
NATURAL LOGARITHM
$\ln (x)$ is the natural logarithm of x
Let $\mathrm{y}=\ln (\mathrm{x})$
$d y / d x=1 / x$
e is base of the natural logarithm function
Let $y=\boldsymbol{e}^{x}$
$d y / d x=e^{x}$

CALCULUS REVIEW

$$
\text { Let } y=f(x)=g(x) / h(x)
$$

$$
d y / d x=f^{\prime}(x)
$$

$$
=h(x)^{*} g^{\prime}(x)-g(x)^{*} h^{\prime}(x)
$$

$$
[\mathrm{h}(\mathrm{x})]^{2}
$$

$$
\text { Let } y=f(x)=g(h(x))
$$

$$
\begin{aligned}
d y / d x & =f^{\prime}(x) \\
& =g^{\prime}(h(x))^{*} h^{\prime}(x)
\end{aligned}
$$

FORCE OF INTEREST AND DISCOUNT
$a(t)=$ Value of \$1 after t years
$A(t)=$ Value of $\$ k$ after t years $=\mathrm{k}[\mathrm{a}(\mathrm{t})$]

Force of interest is the instantaneous rate of change of the accumulation function

Let $\mathrm{y}=\mathrm{A}(\mathrm{t})$
$\mathrm{dy} / \mathrm{dt}=\mathrm{A}^{\prime}(\mathrm{t})$
Must modify this to determine force of interest - see next page

FORCE OF INTEREST AND DISCOUNT

Must divide by $A(t)$ to give result independent of amount of deposit:
$\delta_{t} \quad=\frac{A^{\prime}(t)}{\mathbf{A}(t)}$
Same result using $a(t)$ function:
$\delta_{t} \quad=\frac{a^{\prime}(t)}{a(t)}$

23

FORCE OF INTEREST AND DISCOUNT

One or two prior exam problems gave $A(t)$, and you had to derive the force of interest:

$$
\text { Let } y=\ln [A(t)]
$$

$$
d y / d t=[1 / A(t)]^{*} A^{\prime}(t)
$$

$$
\begin{aligned}
& =\frac{A^{\prime}(t)}{A(t)} \\
& =\delta_{t}
\end{aligned}
$$

This is based on page 21:

$$
\begin{aligned}
\text { Let } y & =f(t)=g(h(t)) \\
d y / d t & =f^{\prime}(t) \\
& =g^{\prime}(h(t))^{*} h^{\prime}(t)
\end{aligned}
$$

FORCE OF INTEREST AND DISCOUNT

Compound interest example:
$\mathrm{a}(\mathrm{t})=(1+\mathrm{i})^{\mathrm{t}}$
$a^{\prime}(t)=(1+i)^{t} \ln (1+i)$
$\delta_{t} \quad=a^{\prime}(t)$ $a(t)$
$\delta_{\text {, }} \quad=\ln (1+\mathbf{i})$ which is a constant
$\boldsymbol{e}^{\delta} \quad=1+\mathrm{i}$

25
§430(h)(2)(F)
YIELD CURVE

PRACTICAL NOTE - NOT ON SYLLABUS:

Data is published monthly by IRS via Notices:

- 430(h)(2)(D) yield curve
- 430(h)(2)(C) segment rates
- 417(e)(3)(D)(i) modified yield curve

Some hints on methodology used are in IRS Notice 2007-81

Technical details are in this write-up: http://www.ustreas.gov/offices/economicpolicy/reports/corporate_yield curve 2007.pdf

YIELD CURVE
 SPOT INTEREST RATES

Sample reporting - Yield Curve NOVEMBER 2008 - IRS Notice 2008-112

Table I
Monthly Yield Curve for November 2008

Maturity	Yield								
0.5	4.92	20.5	8.05	40.5	7.35	60.5	7.13	80.5	7.03
1.0	5.93	21.0	8.02	41.0	7.34	61.0	7.13	81.0	7.02
1.5	6.77	21.5	7.98	41.5	7.33	61.5	7.13	81.5	7.02
2.0	7.35	22.0	7.95	42.0	7.33	62.0	7.12	82.0	7.02
2.5	7.65	22.5	7.91	42.5	7.32	62.5	7.12	82.5	7.02
3.0	7.75	23.0	7.88	43.0	7.31	63.0	7.12	83.0	7.02
3.5	7.74	23.5	7.85	43.5	7.30	63.5	7.11	83.5	7.01
4.0	7.70	24.0	7.82	44.0	7.30	64.0	7.11	84.0	7.01
4.5	7.66	24.5	7.79	44.5	7.29	64.5	7.11	84.5	7.01
5.0	7.64	25.0	7.77	45.0	7.28	65.0	7.10	85.0	7.01
5.5	7.64	25.5	7.74	45.5	7.28	65.5	7.10	85.5	7.01
6.0	7.68	26.0	7.72	46.0	7.27	66.0	7.10	86.0	7.00
6.5	7.74	26.5	7.70	46.5	7.26	66.5	7.09	86.5	7.00
7.0	7.81	27.0	7.68	47.0	7.26	67.0	7.09	87.0	7.00
7.5	7.90	27.5	7.66	47.5	7.25	67.5	7.09	87.5	7.00
8.0	7.99	28.0	7.64	48.0	7.25	68.0	7.09	88.0	7.00
8.5	8.08	28.5	7.62	48.5	7.24	68.5	7.08	88.5	7.00
9.0	8.17	29.0	7.61	49.0	7.24	69.0	7.08	89.0	6.99
9.5	8.25	29.5	7.59	49.5	7.23	69.5	7.08	89.5	6.99
10.0	8.31	30.0	7.58	50.0	7.23	70.0	7.07	90.0	6.99
10.5	8.37	30.5	7.56	50.5	7.22	70.5	7.07	90.5	6.99

Individual rates are spot rates - yield for zero coupon bond of same maturity

PRESENT VALUES USING YIELD CURVE

In general,
$P V=\sum_{t=0}^{\omega}(1+\mathrm{i})^{\mathrm{t}} \mathrm{t}_{\mathrm{x}}^{(\mathrm{T})}\left(\right.$ Benefit Payment $\left._{\mathrm{x}+\mathrm{t}}\right)$

Yield curve - interest rates vary each year:
$\sum_{t=0}^{\omega}\left(1+i_{t}\right)_{t}^{-t} p_{x}^{(T)}\left(\right.$ Benefit Payment $\left._{x+t}\right)$
Note subscript on in second summation

PRESENT VALUES USING YIELD CURVE FORWARD INTEREST RATES

Derive forward rates k_{t} equivalent to the yield curve rates i_{t}
$\left(1+\mathrm{i}_{\mathrm{t}}\right)^{-\mathrm{t}}=\left[\left(1+\mathrm{k}_{1}\right)\left(1+\mathrm{k}_{2}\right)\left(1+\mathrm{k}_{3}\right) \ldots\left(1+\mathrm{k}_{\mathrm{t}}\right)\right]^{-1}$
$\left(1+\mathrm{i}_{1}\right)^{-1}=\left[\left(1+\mathrm{k}_{1}\right)\right]^{-1}$
$\left(1+\mathrm{i}_{2}\right)^{-2}=\left[\left(1+\mathrm{k}_{1}\right)\left(1+\mathrm{k}_{2}\right)\right]^{-1}$
$\left(1+\mathrm{i}_{3}\right)^{-3}=\left[\left(1+\mathrm{k}_{1}\right)\left(1+\mathrm{k}_{2}\right)\left(1+\mathrm{k}_{3}\right)\right]^{-1}$

PRESENT VALUES USING YIELD CURVE FORWARD INTEREST RATES

Yield curve - interest rates vary each year:

Forward rates:
$\sum_{t=0}^{\omega}\left[\left(1+k_{1}\right)\left(1+k_{2}\right) \ldots\left(1+k_{t}\right)\right]^{-1}{ }_{t} p_{x}^{(T)}\left(\right.$ Benefit Payment $\left._{x+t}\right)$

Can use forward rates in identical manner as select and ultimate rates

